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Abstract

Continual pre-training has been urgent for
adapting a pre-trained model to a multitude
of domains and tasks in the fast-evolving world.
In practice, a continually pre-trained model is
expected to demonstrate not only greater capac-
ity when fine-tuned on pre-trained domains but
also a non-decreasing performance on unseen
ones. In this work, we first investigate such
anytime fine-tuning effectiveness of existing
continual pre-training approaches, concluding
with unanimously decreased performance on
unseen domains. To this end, we propose a
prompt-guided continual pre-training method,
where we train a hypernetwork to generate
domain-specific prompts by both agreement
and disagreement losses. The agreement loss
maximally preserves the generalization of a
pre-trained model to new domains, and the dis-
agreement one guards the exclusiveness of the
generated hidden states for each domain. Re-
markably, prompts by the hypernetwork allevi-
ate the domain identity when fine-tuning and
promote knowledge transfer across domains.
Our method achieved improvements of 3.57%
and 3.4% on two real-world datasets (including
domain shift and temporal shift), respectively,
demonstrating its efficacy.

1 Introduction

Pre-trained language models (LMs), such as GPT-
3 (Brown et al., 2020) and BERT (Devlin et al.,
2019a), have revolutionized a wide spectrum of
downstream natural language processing (NLP)
tasks. Being initially pre-trained on a vast unla-
beled corpus (e.g., C0 in Fig. 1), unfortunately, they
struggle to keep up to date with language evolution
(e.g., emerging internet slang, expanded meaning
of “Omicron”) and domain shift (e.g., electronic
health records for medical diagnosis).
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Figure 1: Illustration of continual pre-training and the
evaluation protocol of anytime fine-tuning, in which aij
in the accuracy table denotes the fine-tuned accuracy of
the LM at any i-th stage, i.e., Bi, on the j-th pre-trained
(blue), current (red), and unseen domains (orange).

Continual pre-training methods (Jin et al., 2022;
Ke et al., 2023) have recently emerged to address it
by continually adapting an LM to a sequence of do-
mains (e.g., T domains in Fig. 1). Two major lines
of existing approaches, including knowledge distil-
lation (Jin et al., 2022) and parameter isolation (Ke
et al., 2023, 2022a), make strides toward (1) maxi-
mizing the adaptability, i.e., the performance of
an LM (e.g., B2 in Fig. 1) when fine-tuning it
onto the domain where it is pre-trained (e.g., D2

in Fig. 1), and (2) avoiding catastrophic forgetting
(CF), which is measured by the fine-tuned perfor-
mance of an LM (e.g., B2 in Fig. 1) on the already
pre-trained domains (e.g., D1 in Fig. 1).

Beyond the above two criteria, in practice, a con-
tinually pre-trained LM is also anticipated to offer
non-decreasing generalization capability on unseen
domains. As illustrated in Fig. 1, it is likely that the
unlabeled corpus for the domain of interest (e.g.,
electronic health records as DT ) remains inaccessi-
ble to an LM (e.g., B2) beforehand, while this LM
should be superior or at least on par with its pre-
ceding models (e.g., B1) on the T -th domain. On
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Figure 2: Evaluation of separate and continual pre-training methods under anytime fine-tuning, where we modify
each value aij by subtracting a0

j as the fine-tuned accuracy of the initial LM B0. (a)-(e) show the accuracy tables by
pre-training each domain separately w.r.t. different sets of parameters (e.g., top layers); (f)-(h) are by the naively
continual pre-training method (NCL), DAS (Ke et al., 2023), and ours. Detailed settings are available in Sec. 5.2.

this account, we propose the comprehensive eval-
uation protocol named anytime fine-tuning that
subsumes all the three aspects, where a continually
pre-trained LM can be fine-tuned and evaluated on
either previously pre-trained, current, or unseen
domains. The effectiveness of current methods in
terms of anytime fine-tuning remains largely un-
clear.

In this paper, we first conduct an empirical in-
vestigation of existing pre-training approaches un-
der anytime fine-tuning (see Fig. 2) and identify
the following two prominent unresolved research
questions. (1) Parameter-efficient pre-training,
such as training adapters (Ke et al., 2021b) and
prompts (Razdaibiedina et al., 2023; Smith et al.,
2023) only for each individual domain, does not
even contribute greater adaptability than that be-
fore pre-training (i.e., evidenced in negative di-
agonal values of Fig. 2(d)(e)). Likewise, pre-
training parts of parameters for each domain, may
also diminish adaptability, through comparison of
Fig. 2(b)(c)(g) with (a). (2) Continual pre-training
is likely at the cost of sacrificing generalization to
unseen domains, shown by large negative values in
the third column of Fig. 2(f)(g).

To address the above issues, we propose a
Hypernetwork Prompt guided Continual Pre-
Training method (namely HPrompt-CPT1) that
strikes a balance between forgetting, adaptability,
and generalization. First, inspired by recent suc-
cess of prompt engineering paired with full fine-
tuning in domain adaptation (Radford et al., 2019;
Brown et al., 2020), we introduce the hnet-prompt
module consisting of a hypernetwork to automat-
ically generate domain-specific prompts without
handcrafted engineering. Different from parameter-
efficient pre-training that train prompts only, we
optimize both the hypernetwork and the full LM so

1The code of HPrompt-CPT will be released at
https://github.com/gangwJiang/HPrompt-CPT

as to fully adapt to the current domain. An added
benefit of hypernetwork prompts is that they elimi-
nate the reliance on the domain identity to pinpoint
prompts when fine-tuning. Second, we maximally
preserve the generalization while mitigating CF of
a continually pre-trained LM via the agreement
and disagreement losses. We prompt the previous
and current LM with a random prompt that sim-
ulates generic or learned domains and introduce
the agreement loss to enforce consistency between
their predictions to avoid forgetting while preserv-
ing model plasticity on other prompts. On the other
hand, the disagreement loss promotes the exclu-
siveness of generated hidden states for the current
domain, thus minimizing interference to the estab-
lished knowledge and encouraging generalization
during fine-tuning through diverse domain knowl-
edge. Noteworthy, the hypernetwork also favors
knowledge generalization, compared to disparate
prompts of different domains.

Main Findings and Contributions. (1) We es-
tablish a continual pre-training evaluation protocol,
called anytime fine-tuning, and empirically verify
that existing parameter-efficient approaches lose
their competitive edge in adaptability and almost
all methods are at risk of impairing generalization
to unseen domains (see Fig. 2). (2) We further
conquer the two challenges by proposing a hy-
pernetwork prompt guided continual pre-training
(HPrompt-CPT) scheme where we train the hyper-
network with both the agreement and disagreement
losses. HPrompt-CPT is effective, achieving the
state-of-the-art on two real-world datasets.

2 Related Work

Continual Learning (CL) focuses on the problem
of sequential learning from a stream of data that
comes in different distributions. It has achieve
a great success in computer vision (Wang et al.,
2022a,c; Smith et al., 2023), natural language pro-

https://github.com/gangwJiang/HPrompt-CPT


cessing (Sun et al., 2019; Ke et al., 2023), and
data mining (Hao et al., 2023; Xue et al., 2023).
In this paper, we focus on one of the important
aspects, continual pre-training and present recent
progresses below. More related works are given in
Appendix A.
Continual Pre-training. Previous studies (Guru-
rangan et al., 2020; Dery et al., 2022) have demon-
strated that the �ne-tuned performance of LM on
downstream tasks can be enhanced by continued
training on a domain-related corpus. Recent works
take this concept further by introducingContinual
Pre-training(CPT), where LM continually learns
from streaming domain corpora. Jin et al. (2022);
Jang et al. (2022) investigate conventional CL meth-
ods in CPT using real-world datasets and highlight
the �nal LM can be �ne-tuned to serve any task
in pre-trained domains, leading to improved per-
formance, while (Hu et al., 2022a) �nds CPT is
comparable with joint pre-training. To improve
upon this, ELLE (Qin et al., 2022) progressively
expands LMs with function-preserving initializa-
tion to inject knowledge from new corpus, while
CPT (Ke et al., 2022a) designs speci�c adapters
and utilizes a hard-masking to avoid CF. Addition-
ally, DGA (Ke et al., 2022b) and DAS (Ke et al.,
2023) adopt soft-masking to directly controls the
update of the entire LM and contrast the previous
and current representations.

Though these methods alleviate CF during CPT,
they ignore the importance of adaptation to domain
knowledge for better �ne-tuned performance (Gu-
rurangan et al., 2020; Dery et al., 2022) and gen-
eralization to unseen domains (Wortsman et al.,
2022; Andreassen et al., 2022). Our work utilizes
the potential of LM and improves all three aspects.

3 Preliminaries

Our language modelB is constructed using the
Roberta architecture (Liu et al., 2019), which is
based on a bi-directional Transformer structure.
LM takes a text sentencex1:T = [ x1; x2; :::; xT ] as
input and encodes it into a contextual embedding
h = [ h1; h2; :::; hT ] = B (x1:T ).

3.1 Pre-training and Fine-tuning Tasks

During pre-training, the model is trained to
predict missing words in a given text sen-
tencex and thus acquires a general understand-
ing of languages, such as syntax, semantics,
and context. The pre-training task is called

masked language modeling (MLM) (Devlin et al.,
2019a), and the objective is̀mlm (x ; W) =
�

P
x̂2 m(x ) logp

�
x̂ j xnm(x ) ; W

�
, whereW de-

notes the parameters of language modelB , m(x)
andxnm(x ) the masked words fromx and the re-
main words, respectively. The conditional proba-
bility is calculated by a prediction layergmlm as
p

�
x̂ j xnm(x ) ; W

�
= gmlm

�
BW (xnm(x ) )

�
.

After pre-training, the model is �ne-tuned us-
ing a smaller dataset speci�c to a downstream task,
which enables it to learn the intricacies and de-
tails of the task. In our study, the downstream task
contains labeled samples(x; y) (e.g., in a hash-
tag prediction task,x is the user's twitter andy is
the selected hashtag). Its objective function is to
minimize`down (x ; W) = � logp(y j x ; W).

3.2 Soft Prompt Learning

Prompt tuning (Lester et al., 2021) is a lightweight
alternative to the full �ne-tuning that introduces a
trainable promptP = [ p1; p2; :::; pL ] as a pre�x to
the input embeddingE = [ e(x1); e(x2); :::; e(xT )]
to replace the update on entire model. The prompt
length is L , e represents the embedding layer
in LM, and pi 2 Rd has the same dimension
d as the token embedding. During prompt tun-
ing, the concatenated matrix[P ; E] 2 R(L + T )� d

is used as the input to the LM, expressed as
B (x; P). The downstream task optimization is rep-
resented as̀down (x ; P) = � logp(y j x ; P) =
� loggdown (B (x; P)) , wheregdown is the predic-
tion layer for the task and the modelB does not
update in conventional soft prompt learning.

3.3 Continual Pre-training for Anytime
Fine-tuning

Continual pre-training (Jang et al., 2022; Meng
et al., 2023) is a way to ef�ciently adapt to the
new domain while maintaining learned knowl-
edge. The problem formulation is as follows (see
Fig. 1): assume a stream of new domains (e.g.,lat-
est news about “Omicron”) sequentially appears as
D1; :::; DN , whereD i is the distribution ofi -th do-
main over a �nite vocabulary of tokensX . Initially,
we have an LM that has been well pre-trained on
the general corpusC0, such as Roberta. Then at
each stagei , a collection of new unlabeled corpus
Ci = f x j x 2 D i g is obtained. The existing LM
continually pre-trains to learn the new knowledge
from D i , with the goal of improving performance
for anytime �ne-tuning, where the LM is expected



Figure 3: An overview of the model structure, with dotted lines indicating trainable modules and solid lines
indicating frozen modules. (a) denotes the soft prompt tuning (Sec. 3.2). (b) shows the pre-training on domain 4 with
the hnet-prompt module (Sec. 4.1). The hypernetwork takes the contextual embeddingĥ as input and automatically
generates a promptP considering domain and sample properties, which clustersP for similar domains (D2,D3,D4)
together and facilitates knowledge generalization. (c) computes the agreement and disagreement losses (Sec. 4.2).

to get greater capacity when �ne-tuned on tasks
from all pre-trained, current, and unseen domains.

Each domain has its labeled datasetD i =
f (x; y) j y = F � (x); x 2 D i g, whereF � 2 Y pro-
vides ground-truth labels for classi�cation. During
the evaluation, the LMB i , pre-trained up to thei -
th domain, is �ne-tuned on a train setD tr

j and then
tested onD te

j to measure its domain performance,
as illustrated in Fig. 1. The resulting accuracy, de-
noted asAccB i

D j
(simpli�ed as ai

j ), indicates the
model capacity on taskD j as well as the degree of
knowledge ofj -th domain maintained by LM after
being sequentially trained up toCi .

Through the integration of results, an accuracy
table is generated, allowing for the computation
of three crucial metrics in anytime �ne-tuning as
discussed in Sec. 1: adaptability, generalization,
and forgetting. The values used to calculate these
metrics are indicated by different colors in Fig. 1.
Red cells along the diagonal of the table repre-
sent adaptability, indicating the degree to which
the LM learns knowledge relevant to current do-
main. Yellow cells in the upper triangle represent
generalization, signifying the ability to perform ef-
fectively in future domains. Blue cells in the lower
triangle represent forgetting, re�ecting a reduction
in previously learned knowledge during training.

4 Method

A successful algorithm of continual pre-training for
anytime �ne-tuning should meet the following re-
quirements: (1) effective adaptation to the current
domain and capturing more domain knowledge, (2)
strong generalization to tasks in unseen domains,
and (3) minimal catastrophic forgetting of previ-

ously learned knowledge. To achieve this, we pro-
pose a framework, dubbed HPrompt-CPT, which
consists of two components: theHnet-Promptmod-
ule andAgreementandDisagreementlosses. The
overview is presented in Fig. 3.

4.1 Hnet-Prompt for Pre-training and
Fine-tuning

Previous soft prompt methods (Qin and Joty, 2022;
Zhu et al., 2022; Razdaibiedina et al., 2023) have
made great success in the CL, with almost no
catastrophic forgetting. However, these parameter-
ef�cient methods fall short in model adaptation
during the pre-training stage and fail to exhibit
generalization capabilities when faced with new
domains, as shown in Fig. 2. On the other hand,
prompt engineering has shown exceptional perfor-
mance in pre-training language models to better
learn domain-speci�c knowledge (Radford et al.,
2019; Brown et al., 2020). However, the use of
hard-coded prompts makes it dif�cult to implement
and less relevant to generalization.

Therefore, inspired by previous meta-learning
approaches (Qiao et al., 2018; Yao et al., 2019),
we propose a prompt module with a meta hypernet-
work (Hnet-Prompt) for automatic knowledge adap-
tation and cross-domain generalization. Speci�-
cally, when a batch of data

�
x1; :::; xn

�
in a spe-

ci�c domain D i comes, the hypernetwork gener-
ates a promptP for each sample (see Fig. 3(b)),
taking into account both domain and sample prop-
erties while generalizing knowledge from learned
domains. The process is parameterized as:

P i = F (ĥ i ) = F (E(x i )) ; (1)



whereE refers to a text encoder,F corresponds to
a hypernetwork, and̂h i represents the contextual
embedding, which captures both the sentence and
implicit domain information.

HypernetworkF encodes the domain feature
of input samples (we use a 6-layer Transformer)
and then projects the pooled feature to obtain the
prompt (see Fig. 3(b)). Rather than directly gen-
erating the prompt, we setM prompt components
V m 2 RL � d and generate a weight vector� 2 RM

to get the �nal promptP =
P M

m=1 � m V m . Vector
� controls the contribution of each prompt compo-
nent, which corresponds to a basic domain. This
approach reduces the parameter of the linear layer
for projection and alleviates forgetting by shifting
the learning problem from remembering the entire
embedding to a weight vector.

Prompt componentsV , analogous to a set of
basis vectors, are a set of prompt embeddings that
are randomly initialized, trainable and optimized
through gradient descent. The well-trained prompt
components are supposed to offer greater gener-
alization to future domains as long as the prompt
components are as mutually exclusive as possible.
For example, a prompt embedding directly opti-
mized for the domain of "ACL papers" does not
directly apply to the domain of "AI papers" due to
the domain difference; however, one of the prompt
components learned on "ACL papers", e.g., "deep
learning", can be combined with another compo-
nent of "statistics" to generalize to the domain of
"AI papers".

During pre-training, the language model is con-
ditioned on the prompt generated by the hypernet-
work, which modelsp(output j input; domain )
and injects the domain knowledge into the model
in an explicit way. Then, we optimize the language
model and hypernetwork in an end-to-end manner
by minimizing the following equation:

`mlm (x ; W; �) =

�
X

x̂2 m(x )

logp
�
x̂ j xnm(x ) ; W; �

�
; (2)

wherep(�) = gmlm
�
BW

�
xnm(x ) ; F�

�
xnm(x )

���

and� is the parameter ofF . This approach allows
for quali�ed and automatic adaptation to domain
knowledge and enables the transfer of this knowl-
edge across domains through hypernetwork.

During downstream task �ne-tuning, domain
identity is not required anymore. Hypernet-
work will automatically map the input samples to

their unique prompt embedding with the knowl-
edge generalized from learned domains. Given
a taskt, the entire model will be �ne-tuned on
the smaller labeled dataset, using the objective
`down (x ; W; �) = � logp(y j x ; W; �) . Here
hypernetworkF is also trainable to get the best
adaptation to downstream tasks. The �ne-tuned
performance on the task shows the degree of do-
main knowledge maintained by the LM.

4.2 Agreement and Disagreement Losses for
Prompted Language Model

While preventing the forgetting of learned knowl-
edge is always the key challenge in continual pre-
training, they are at the cost of adaptability and gen-
eralization. To overcome it, we propose a novel ap-
proach, named agreement and disagreement losses.
Agreement loss. While knowledge distillation
(KD) has been demonstrated to perform well in
overcoming CF (Chuang et al., 2020; Dong et al.,
2021), its alignment on the entire feature space
can limit the adaptation to new domains. To alle-
viate it, we propose to align the outputp(output j
input; domain ) of the prompted language model
insteadp(output j input ) used in conventional
KD. We term this approach theagreement loss.
Speci�cally, we begin with the prior learned LM
B i � 1. Then, initialize the random promptP rand

and generate prompted hidden states using both cur-
rent LM B i and previous LMB i � 1 (see Fig. 3(c)).
We then minimize the distance metricsM between
the outputs of two models, as shown below:

`a(x ; W) = M [B i � 1(x ; P rand );

B i
W (x ; P rand )];

(3)

where P rand simulates the condition to active
generic or learned domain knowledge. The agree-
ment loss, which operates onB (�; P rand ) , effec-
tively prevents forgetting by enforcing consistency
on multiple randomized conditions and preserves
the plasticity to new domains by maintaining model
capacity conditioned on other prompts, as demon-
strated by a comparison to KD. A smallerM indi-
cates a closer distance between the two inputs. In
this article, we use cosine similarity to calculate
M , which performs better than the KL distance
between logits in the experiments in Sec. 5.4.
Disagreement loss. Besides the consistency
achieved by agreement loss, we also expect the
exclusiveness of the generated hidden states for the
current domain. It brings two advantages: (1) it re-
duces interference to established knowledge, which



Table 1: Performance of baseline results on DAPset/TWEET benchmarks (all results reported in this paper are
averaged over 4 random seeds). The symbol “� ” in the table is becauseF _Acc is the same as the average accuracy
A_Acc in the separate pre-training settings.We also report the results for different domain orders in Appendix D.

Setting Method DAPset TWEET
A _Acc O _Acc F _Acc A _Acc O _Acc F _Acc

Separate
Pre-training

Initial 0.8053� 0.010 0.8171� 0.010 - 0.7933� 0.001 0.7935� 0.001 -
Multi-Task 0.8203� 0.002 0.8299� 0.005 - 0.8014� 0.002 0.8047� 0.001 -
One-Full 0.8235� 0.007 0.8174� 0.008 - 0.8037� 0.001 0.8064� 0.001 -

One-Adapter 0.8060� 0.008 0.8172� 0.003 - 0.7913� 0.002 0.7915� 0.003 -
One-Prompt 0.8101� 0.012 0.8109� 0.012 - 0.7873� 0.002 0.7876� 0.002 -

Continual
Pre-training

NCL 0.8298� 0.005 0.8189� 0.006 0.8198� 0.005 0.8108� 0.002 0.8094� 0.001 0.8079� 0.001
EWC 0.8082� 0.004 0.8109� 0.003 0.8020� 0.003 0.8028� 0.001 0.8048� 0.001 0.8037� 0.001

DERpp 0.8245� 0.002 0.8174� 0.004 0.8239� 0.001 0.8102� 0.001 0.8087� 0.001 0.8118� 0.001
LwF 0.8239� 0.003 0.8229� 0.006 0.8179� 0.006 0.8021� 0.002 0.7986� 0.002 0.8082� 0.001

CoDA-Prompt 0.8141� 0.002 0.8161� 0.004 0.8176� 0.004 0.7931� 0.001 0.7954� 0.001 0.7958� 0.001
DAS 0.8221� 0.004 0.8164� 0.001 0.8251� 0.006 0.8066� 0.001 0.8078� 0.001 0.8099� 0.003
Ours 0.8356� 0.002 0.8277� 0.003 0.8341� 0.003 0.8186� 0.001 0.8168� 0.002 0.8203� 0.001

mitigates forgetting (Farajtabar et al., 2020; Wang
et al., 2021b); (2) it encourages generalization
when �ne-tuning by incorporating a wider range
of domain knowledge (Pagliardini et al., 2023). To
achieve this exclusiveness, we add a loss function
calleddisagreement loss. Speci�cally, when a sam-
ple comes, we generate the prompt using hyper-
networkF and train the prompted LM to maxi-
mally disagree with the output of the previous LM,
which is also promoted by the same embedding
(see Fig. 3(c)). This involves minimizing the agree-
ment metricA (�; �) to push apart the two prompted
hidden states:

`da(x ; W; �) = A(B i � 1(x ; F (x)) ;

B i
W (x ; F� (x))) ;

(4)

thereby increasing the exclusiveness of the output
of LM for the current domain. In Sec. 5.4, we
compare various implementation ofA including
orthogonal constrain (Smith et al., 2023), softmax
variant (Pagliardini et al., 2023), opposite value of
KL-divergence. Ultimately, we select the orthog-
onal constraint, which can be calculated using the
equationA ortho (X ; Y ) = jjXY T � I jj .

Finally, the loss function of our HPrompt-CPT
during pre-training can be summarized as follows:

L =
NX

i =1

`mlm + � 1`a + � 2`da; (5)

whereN is the batch size, and� 1; � 2 are the trade-
off hyper-parameters. The loss inputx i is omitted.

5 Experiment

In this section, we conduct experiments on two
benchmarks to investigate the adaptability, general-
ization, and degree of forgetting of HPrompt-CPT.

5.1 Benchmarks

DAPset. It is a benchmark for continual domain
adaptive pre-training, originally constructed by (Ke
et al., 2023). It consists of six domains, each with
an unlabeled corpus and a corresponding end-task
classi�cation dataset. Each domain contains a cor-
pus size of over 100 million tokens, and we follow
the original data construction and task order.
TWEET. We develop a new benchmark based on
a tweet dataset (Jin et al., 2022) to simulate the
distribution shift over time. The dataset includes
tweets from 2015 to 2019 and is split into �ve time
periods to form �ve domain corpora, each with
over 50 million tokens. The tweet texts are pre-
processed following Nguyen et al. (2020). For the
downstream task, we build a single-label hashtag
prediction dataset for each domain following Gong
and Zhang (2016). TWEET keeps the chronolog-
ical order of domains to simulate the updating in
the real-world system. Please refer to Appendix B
for more information about the two benchmarks.

5.2 Metrics and Baselines

Metrics. We introduce three attributes of continual
pre-training in Sec.3.3 and provide an explanation
of their evaluation methods. Formally, we utilize
the adaptation accuracyA_Acc = 1

T

P T
i =1 ai

i to
measure adaptability, the out-of-domain accuracy
O_Acc = 2

T � (T � 1)

P T
i =1

P T
j = i +1 ai

j to evaluate
generalization, and the �nal accuracyF _Acc =
1
T

P T
i =1 aT

i to assess the degree of catastrophic for-
getting. Here,aj

i represents the �ne-tuned accuracy
on thei -th downstream task, after being sequen-
tially trained up to corpusCj in thej -th domain.
Baselines. We �rst evaluate the algorithms
that build separate modelfor each domain, in-
cluding: (1) Initial is �ne-tuned on the initial



pre-trained point. (2)Multi-Task is domain-
adaptively pre-trained on the mixture of all do-
mains. (3)One-Full is domain-adaptively pre-
trained with the updates on the full model. (4)One-
Adapter is domain-adaptively pre-trained with an
adapter layer (Houlsby et al., 2019). (5)One-
Prompt is domain-adaptively pre-trained with a
new prompt (Lester et al., 2021). Additionally, we
test 7continual pre-trainingmethods: (6)NCL is
sequentially pre-trained without any CL methods.
(7) EWC (Kirkpatrick et al., 2017) is a regulariza-
tion method that penalizes changes to important
neurons. (8)DERpp (Buzzega et al., 2020) is a re-
play method in both sample and feature levels. (9)
LwF (Li and Hoiem, 2017) uses knowledge distil-
lation to protect previous predictions. (10)CoDA-
Prompt (Smith et al., 2023) uses a set of prompt
components to learn domain-speci�c knowledge.
(11) DAS (Ke et al., 2023) is a parameter-isolation
method which adopts soft-masking.

For HPrompt-CPT, we adopt a 6-layer Trans-
former as our hypernetwork and frozen Roberta as
text encoder. We set the prompt length to 50, and
the size of prompt components to 100. In addition,
we implement a replay loss to the hypernetwork
with a memory buffer storing 300 samples to get the
best performance, while removing it resulting in a
minimal drop of 0.24% inF _Acc on DAPset. Dur-
ing �ne-tuning, we train each task for 15 epochs
with an early stopping mechanism using the val-
idation data (30% of testing data). We include
additionalImplementation Detailsin Appendix C.

5.3 Results and Analysis

Comparison with the state-of-the-art. Table 1
shows the continual pre-training performance of
different methods on three dimensions. From these
results, we make the following observations:

Observation 1:HPrompt-CPT outperforms base-
lines in terms of adaptability, generalization, and
avoidance of catastrophic forgetting. Our approach
achieves new state-of-the-art results across all three
metrics, with increases of 1.38% and 1.09% on the
DAPset in terms of generalization and �nal per-
formance compared to the most recent algorithm,
DAS, as depicted in the last row of Table 1. These
results highlight the advantages of injecting do-
main knowledge into the LM with the hnet-prompt
module, which aids in adaptation and promotes
knowledge transfer.

Observation 2: Naive multi-task learning is

Figure 4: Performances on DAPset with different sizes
of the corpus. The implementations of “ours (trans/lin)"
refer to utilizing transformer/linear hypernetwork in
HPrompt-CPT, respectively.

sub-optimal for continual pre-training. Our hnet-
prompt method achieves a relative improvement
in F _Acc of 1.69% on DAPset and 2.35% on
TWEET, suggesting that it can alleviate negative
transfer between con�icting domains and mini-
mize forgetting. It is worth noting that theO_Acc
metric of multi-task learning cannot be compared
fairly with other algorithms since it has already
observed all domains. Nevertheless, our algorithm
still achieves a 1.50% gain on TWEET, which may
result from the generalization of the diverse domain
knowledge in HPrompt-CPT.

Observation 3:Full model tuning achieves better
results in learning and transferring domain knowl-
edge. Our proposed method and NCL outperform
parameter-ef�cient methods such as One-Adapter,
One-Prompt, and CoDA-Prompt. Interestingly,
methods that incorporate regularization terms on
parts of neurons, such as EWC and DAS, also re-
sult in lowerA_Acc. This suggests that injecting a
large amount of domain knowledge into the LM re-
quires a suf�cient number of trainable parameters.
Our prompted LM, with all parameters trainable
and no empirical constraints on updates, shows the
best adaptation performance.

Data-ef�cient pre-training. Note that we hypothe-
size that HPrompt-CPT is especially effective in the
setting of anytime �ne-tuning. Its performance on a
small subset of the corpus is worth referring to, for
the model can be utilized for �ne-tuning in cases
where a domain is not �nished training. Fig. 4 illus-
trates the performances trained on different sizes
of datasets and highlights the effectiveness of our
method in low-resource environments, particularly
in terms of generalization ability. Our design of the
hnet-prompt module successfully promotes knowl-
edge transfer across domains, and besides we ob-



Figure 5: The t-sne map about prompt embedding and
hidden state of the last layer.Ci andD i denote the cor-
pus and downstream task ini -th domain, respectively.

serve that the structure of the hypernetwork matters
in such settings. Transformers may under�t facing
smaller datasets, resulting in poor performances
compared to the linear structure.
Analysis on the distributions of hnet-prompt em-
beddings and hidden states.We perform qualita-
tive analyses on prompts and hidden states gener-
ated by HPrompt-CPT to investigate whether the
hypernetwork can generalize domain information.
As depicted in Fig. 5, We use t-sne map (van der
Maaten and Hinton, 2008) to visualize the model
output before and after training on all six domains
in DAPset. For prompts, we observe that the gen-
erated prompt embeddings can effectively cluster
similar domains together (e.g., overlapping embed-
dings for corporaC2, C3, andC5 from the same
paper dataset) while also achieving differentiation
for dissimilar domains (e.g., distant embeddings
for C1 (restaurant) andC5 (bio-chem)). This is an
impressive result, i.e., it transfers the information
across domains, making it easier for the LM to
effectively adapt and generalize knowledge.

For hidden states, our model generates distin-
guishable hidden states for downstream task based
on pre-trained domain information, i.e.,the initially
mixed downstream representation (D1 - D6 in
Fig. 5 top right) are successfully separated in Fig. 5
top left. For instance, the model assigns overlap-
ping representations to similar tasksD2 andD3

(belonging to ACL and AI, respectively), while pro-
viding effective differentiation for unrelated tasks
D1 (restaurant) andD5 (biology).

5.4 Ablation Study

Table 2 and 3 present the results of different de-
signs of HPrompt-CPT on DAPset, where hyper-
parameters are �xed across all settings.
Effectiveness of the main components.To as-
sess the impact of the hypernetwork, we replace

Table 2: Ablation results on the main components.

Hypernetwork ` a ` da A _Acc O _Acc F _Acc

7 7 7 0.8165 0.8066 0.8114
7 3 3 0.8223 0.8149 0.8208
3 7 7 0.8312 0.8176 0.8242
3 3 7 0.8307 0.8168 0.8297
3 7 3 0.8335 0.8235 0.8280
3 3 3 0.8356 0.8277 0.8341

the hnet-prompt with progprompt (Razdaibiedina
et al., 2023), which generates a new soft prompt
for each domain and concatenates it and previously
learned prompts while requiring domain-id during
�ne-tuning. As shown in Table 2 (rows 1 and 3),
it results in a signi�cant decrease in performances,
particularly in adaptability, with an almost 1.77%
decrease. It highlights the effectiveness of hnet-
prompt in adapting and generalizing domain knowl-
edge, providing great capacity for �ne-tuning.

To examine the effect of the agreement and dis-
agreement losses, we compare the results of train-
ing progressive prompt and hnet-prompt with and
without them. It shows that incorporating the agree-
ment and disagreement losses lead to a 1.15% and
1.20% improvement inF _Acc for the two mod-
els, respectively, demonstrating its ef�ciency in
preventing CF. Furthermore, we observe that in-
troducing the disagreement loss results in a 1.33%
gain inO_Acc, which is attributed to the incorpo-
ration of a wider range of domain knowledge for
adaptation, as discussed in Sec. 4.2.
Hypernetwork structure. We further investigate
the different designs of hypernetwork and present
the results in Table 3 (top). First, we compare
the network structure with the Linear layer or Mul-
tilayer Perceptron (MLP) (the top two rows), but
they show poor adaptability and a higher level of
CF. Interestingly, we �nd that the linear structure
is more stable when facing a low-resource setting.
Besides, we examine the performance of generat-
ing prompt embedding directly to show the signi�-
cance of the component-based method introduced
in Sec. 4.1. The results reveal that the component-
based approach outperforms in generalization and
preventing forgetting, bene�ting from shifting the
learning problem from remembering prompt to the
weight vector which is a simple task.
Agreement and disagreement loss objective.We
�rst replace the agreement loss with the conven-
tional KD and the result are presented in the �rst
row of Table 3 (middle). It shows agreement loss
leads to a 1.06% improvement in adaptability while


