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Abstract

The success of meta-learning on out-of-distribution (OOD) tasks in the wild has
proved to be hit-and-miss. To safeguard the generalization capability of the meta-
learned prior knowledge to OOD tasks, in particularly safety-critical applications,
necessitates detection of an OOD task followed by adaptation of the task towards the
prior. Nonetheless, the reliability of estimated uncertainty on OOD tasks by existing
Bayesian meta-learning methods is restricted by incomplete coverage of the feature
distribution shift and insufficient expressiveness of the meta-learned prior. Besides,
they struggle to adapt an OOD task, running parallel to the line of cross-domain
task adaptation solutions which are vulnerable to overfitting. To this end, we build
a single coherent framework that supports both detection and adaptation of OOD
tasks, while remaining compatible with off-the-shelf meta-learning backbones. The
proposed Energy-Based Meta-Learning (EBML) framework learns to characterize
any arbitrary meta-training task distribution with the composition of two expressive
neural-network-based energy functions. We deploy the sum of the two energy
functions, being proportional to the joint distribution of a task, as a reliable score for
detecting OOD tasks; during meta-testing, we adapt the OOD task to in-distribution
tasks by energy minimization. Experiments on four regression and classification
datasets demonstrate the effectiveness of our proposal.

1 Introduction

Meta-learning [48, 6] that builds general-purpose learners with limited data has been under constant
investigation, recently demonstrating its potential to even advance few-shot learning of large lan-
guage models [36, 44]. Analogous to the notorious domain shift [23] that degrades the performance
of deep learning, meta-testing tasks that are out of the distribution of meta-training tasks (a.k.a.
out-of-distribution (OOD) tasks) put the meta-learned prior knowledge at high risk of losing effective-
ness [46]. In real-world applications, though, out-of-distribution tasks are highly prevalent, e.g., bin
picking for a robot that has never been meta-trained on environments involving bins [55], MRI-based
pancreas segmentation given a host of meta-training tasks with pathology images [35], and etc. Thus,
it is imperative to secure the generalization ability of the meta-learned prior (i.e., meta-generalization)
to OOD tasks, especially in safety-critical applications such as medical image analysis.

The first step to securing meta-generalization to a task is to develop awareness of whether the task
is OOD or not, i.e., OOD task detection. Existing solutions in literature have pursued a variety of
Bayesian meta-learning methods [7, 54, 41, 10, 43] that balance between flexibility and tractability of
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(b) Limited Expressiveness. The meta-training task
distribution learned by EBML-CNPs (middle, ours)
outperforms F-PACOH-GP [43] whose prior distri-
bution is built on GP.

Figure 1: Comparison of EBML and Bayesian meta-learning baselines for OOD detection.

solving the hierarchical probabilistic model p(Yi|Xi) =
∫∫
p(Yi|Xi, ϕi)p(ϕi|θ)p(θ) dϕidθ, where

Ti = {Xi,Yi} represents the i-th task. θ and ϕi denote parameters of the meta-model and task-
specific model, respectively. Unfortunately, these methods present some limitations in their practical
usage. (1) Incomplete OOD coverage: given that the Bayesian uncertainty is trained via maximizing
the posterior p(Yi|Xi) above, it is not necessarily high when encountering an OOD task that shares
the predictive function p(Yi|Xi) with some meta-training tasks but differs substantially in feature
distributions p(Xi). We verify this in Figure 1a and Appendix D. (2) Limited expressiveness: for
tractability purpose, the meta-learned prior p(ϕi|θ) predicates on simple known distributions, e.g.,
Maximum A Posterior (MAP) estimation [6, 53] and Gaussian [41, 7, 43], which may struggle to
align with the complex probabilistic structure of the meta-training task distribution (see Figure 1b).
This misalignment inevitably leads to unreliable estimation of OOD tasks.

Upon detection of an OOD task, secondly, adaptation of the meta-learned prior promotes its gen-
eralization to this OOD task. We dub this strategy during meta-testing as OOD task adaptation,
which is closely related to cross-domain meta-learning [4, 25, 34, 49]. The core philosophy behind
cross-domain meta-learning is the introduction of task-specific parameters which are inferred via
either gradient descent [28, 29] or feed-forward amortized encoder [42, 8] on the support set of each
OOD task. Learning task-specific parameters, however, is prone to overfitting given the usually very
limited size of a support set (e.g., 5 examples only in 5-way 1-shot classification).

The limitations are further complicated by the detachment of the existing solution to OOD task
detection from that to OOD task adaptation. An explicit prior model is absent in existing Bayesian
meta-learning methods for OOD task detection, so that adapting the prior during meta-testing to
accommodate an OOD task is ambitious to achieve. On the other hand, cross-domain meta-learning
approaches by design do not offer uncertainty estimation, thereby being a risky OOD task detector.
Pursuing a coherent framework that supports both detection and adaptation of OOD tasks remains an
open question, which motivates our proposal of a novel probabilistic meta-learning framework.

By virtue of the flexibility and expressiveness of energy-based models [24] in modelling complex
data distributions, we propose the Energy-Based Meta-Learning (EBML) framework that overcomes
the above-mentioned limitations. Specifically, we derive an energy-based model to explicitly model
any meta-training task distribution, resulting in the composition of an explicit prior energy function
and a complexity energy function. The sum of the two energy functions, trained directly to meet
the joint distribution p(Xi,Yi) and parameterized with neural networks, has completeness and
expressiveness advantages that give it an edge in detection of OOD tasks. During meta-testing, we
iteratively update the parameter for a task that has been identified as OOD by gradient descent of
energy minimization, which eventually adapts the prior towards in-distribution tasks and maximally
leverages the meta-learned prior for alleviating overfitting.

The key contributions of this research are outlined below. (1) Coherence and generality: we provide a
coherent probabilistic model that allows both detection and adaptation of OOD tasks. Also, EBML is
agnostic to meta-learning backbones, being general to secure meta-generalization for arbitrary off-the-
shelf meta-learning approaches against OOD tasks. (2) Practical efficacy: we conduct our experiments
on three regression and one classification datasets, on which EBML outperforms SOTA Bayesian
meta-learning methods for OOD task detection with an improvement of up to 7% on AUROC and
cross-domain meta-learning approaches for OOD task adaption with up to 1.5% improvement.

2 Related Work

Bayesian Meta-learning There has been a line of literature on Bayesian meta-learning algorithms
with predictive uncertainty estimation for safeguarding safety-critical and few-shot applications. Grant
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et al. [11] first recast gradient-based meta-learning as a tractable hierarchical Bayesian inference
problem. Much of the subsequent research attempts to solve the problem with various approximations.
Assuming a sufficient number of meta-training tasks, almost all works use a point estimate for the
initialization [41, 19, 10]. However, estimates of exceptions including [54] rely on SVGD [32] for
inference and require significant computation for an ensemble of task-specific weights. Several
studies that estimate the uncertainty in task-specific parameters after inner-loop adaptation have
explored MAP estimates [e.g. 47], sampling from a neural network [10, 53, 42], and variational
inference [41, 7, 43]. The uncertainties considered in these methods are often modelled using isotropic
Gaussians which suffer from limited expressiveness.

Meta-learning towards OOD Generalization Recent cross-domain meta-learning methods [e.g.
25, 4, 49, 34] deal with a distribution shift between meta-training and meta-testing tasks, by typically
parameterizing deep networks with a large set of task-agnostic and a small set of task-specific
weights that encode shared representations and task-specific representations for the training domains,
respectively. The works of [42, 1, 34] augment a shared pre-trained backbone with task-specific
FiLM [40] layers whose parameters are estimated through an encoder network conditioned on the
task’s support set. TSA [28] and URL [29] propose to attach task-specific adaptors in matrix form to
the pre-trained backbone at test time, inferring their parameters by gradient descent on the support set
for each task from scratch. On the other hand, SUR [4] and URT [31] pre-train multiple backbones
each for an ID training domain, and meta-learn an attention mechanism to selectively combine
the pre-trained representations into task-specific ones for ID and OOD classification. While these
methods generally have improved performance in the OOD domains of tasks, they nevertheless are
not designed with any explicit mechanism for detecting OOD tasks, i.e., lacking OOD awareness.

EBMs for OOD Detection Recently, there has been increasing interest in leveraging EBMs for
detecting testing samples that are OOD w.r.t. the training data distribution. Liu et al. [33] directly
use the energy score for OOD input detection, while Grathwohl et al. in JEM [12] use gradient
norm of the energy function as an alternative OOD score; both yield more superior OOD detection
performance than traditional density-based detection methods. There are also a number of works
that investigate the OOD detection capability of hybird and latent variable EBMs [38, 14, 13],
and more advanced training techniques for improving the density modelling hence OOD detection
performance of EBMs [5, 2, 57, 3]. While all aforementioned works focus on the standard supervised
and unsupervised learning scenarios, Willette et al. in [52] study OOD detection in meta-learning.
However, their work differs from EBML in that (a) EBML aims to detect a meta-testing task that
is OOD of the meta-training tasks whereas [52] focuses on detecting a query sample that is OOD
of the support samples in a meta-testing task, and (b) EBML explicitly meta-learns the distribution
of meta-training tasks via the two proposed EBMs and develops the Energy Sum to flag those high-
energy tasks as OOD tasks; while [52] resorts to post-hoc OOD detection via energy scaling (akin
to temperature scaling in softmax output) without learning any EBM. Moreover, we offer EBML
as a generic and flexible probabilistic meta-learning framework that supports both detection and
adaptation of OOD tasks.

3 Preliminaries: Energy-based Models

An energy-based model (EBM) [24] expresses a probability density p(x) for x ∈ RD as

pθ(x) =
exp(−Eθ(x))

Z(θ)
, (1)

where Eθ(x) is the energy function parametrized by θ that maps each point x in the input space to
a scalar value known as the energy. Z(θ) =

∫
x
exp(−Eθ(x))dx is the partition function that is a

constant w.r.t. the variable x. Training pθ(x) to fit some data distribution pD(x) requires maximizing
the log-likelihood L(θ) = Ex∼pD(x)[log pθ(x)] w.r.t. θ. Though an intractable integral in Zθ is
involved in this objective, it is not a concern when computing the gradient [3, 12]

∇θL = Ex′∼pθ [∇θEθ(x
′)]− Ex∼pD [∇θEθ(x)]. (2)

Intuitively, Eqn. (2) encourages Eθ to assign low energy to the samples from the real data distribution
pD while assigning high energy to those from the model distribution pθ. Computing Eqn. (2), thus,
requires drawing samples from pθ, which is challenging. Recent approaches [12, 3] on training EBMs
resort to stochastic gradient Langevin dynamics (SGLD) [51] which generates samples following

x0 ∼ p0(x), xk+1 = xk − η2

2

∂Eθ(x
k)

∂xk
+ ηzk. (3)
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The K-step sampling starts from an (typically uniform) initial distribution p0(x). zk∼N (0, I)∈RD
is a perturbation, and η ∈ R+ controls the step size and noise magnitude. Denote the distribution qθ by
Eqn. (3), which signifies x′=xK∼qθ. When η→0 and K→∞, then qθ→pθ under some regularity
conditions [51]. Consequently, the gradient of Eqn. (2) is approximated in practice [3, 12] by

∇θL = Ex′∼stop_grad(qθ)[∇θEθ(x
′)]− Ex∼pD [∇θEθ(x)], (4)

where the gradient does not back-propagate into SGLD sampling.

4 Energy-Based Meta-learning

For clarity, we use the notation PID to denote the unknown meta-training ID task distribution where
the i-th training task is T i. We let Xi, Yi to denote sets of samples {xij , yij} in T i, and T si , T

q
i

to denote support and query sets, respectively. The size of T i, T si , T
q
i is denoted by Ni, Ns

i , Nq
i ,

respectively. The subscript i denotes the task index, and j denotes the sample index.

4.1 Energy-based Modelling of Task Distribution

As illustrated in Introduction, existing probabilistic meta-learning methods maximizing the predic-
tive likelihood p(Y|X) suffer from incomplete OOD coverage. To this end, we model the meta-
training task distribution by (1) formulating the joint distribution p(Xi,Yi) of each task T i and
(2) maximizing the log-likelihood of all meta-training tasks. Concretely, by Kolmogorov’s exten-
sion and de Finneti’s theorems [22], we have the expected log-likelihood of the meta-training tasks
as EPID [log p(T i)] = EPID [log p(Xi,Yi)] = EPID [log

∫
ϕi

∏Ni
j=1 p(xij , yij |ϕi)p(ϕi)dϕi]. Each

p(T i) is written in a factorized form over Ni conditional independent distributions with ϕi being the
task-specific latent variable. Due to the intractable integral over ϕi in high dimension, we resort to
amortized inference [8, 41] and learn with a lower-bound instead. This gives the ELBO

EPID [log p(T i)]≥E
[
Eϕi∼qψ(ϕi| T si )

[
log

Ni∏
j=1

p(xij , yij |ϕi)
]
−KL

(
qψ(ϕi| T si )||p(ϕi)

)]
. (5)

Following the conventional wisdom [41, 28, 6], qψ is conditioned on the support set only during meta-
training to align the inference procedure, i.e., ϕi ∼ qψ(ϕi| T si ), for meta-training and meta-testing.
It remains now to parameterize the three distributions in Eqn. (5) including (a) the task-specific
data distribution p(xij , yij |ϕi), (b) the prior latent distribution p(ϕi), and (c) the posterior latent
distribution qψ(ϕi| T si ). Prior works parameterize these distributions in simple known forms, e.g.,
Gaussians [41, 7, 43] or MAP estimation [6, 53], which may be insufficient to match the complex
probabilistic structure of the meta-training task distribution. To increase the expressiveness, we turn
to EBMs for parameterizing the two distributions of p(xij , yij |ϕi) and p(ϕi). For one reason,
EBMs are known to be sufficiently flexible and expressive for characterizing complex arbitrary
density functions [3] not limiting to only uni-modal distributions like isotropic Gaussians and MAP
estimation; for another, the energy function of an EBM is directly proportional to the negative
log-likelihood, paving the way for OOD detection in Section 4.2.

(a) Task-specific data EBM We model p(xij , yij |ϕi) by an energy function parameterized with ω,

p(xij , yij |ϕi) = pω(xij , yij |ϕi) =
exp(−Eω(xij , yij ,ϕi))

Z(ω,ϕi)
, (6)

where Eω denotes the task-specific data energy function conditioned on the latent ϕi, and Z(ω,ϕi)
is the corresponding partition function. Note that the parameter ω of this EBM is shared by all tasks.

(b) Latent prior EBM Inspired by [39], we model the prior latent distribution p(ϕi) as an uncon-
ditional EBM parameterized by λ; training such a EBM offers expressiveness benefits over a fixed
non-informative prior distribution, e.g., isotropic Gaussian distribution. Specifically,

p(ϕi) = pλ(ϕi) =
exp(−Eλ(ϕi))

Z(λ)
, ∀i. (7)

(c) Latent posterior As many meta-learning algorithms have already carefully designated the poste-
rior latent distribution qψ(ϕi| T si ), we simply follow the same implementation of qψ in the chosen
base meta-learning algorithm, e.g., MAP estimation in [8, 42, 1, 53]. This design favorably empowers
EBML to be a generic and flexible framework compatible with off-the-shelf meta-learning algorithms.
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Grounded on the above parameterization, we are now ready to derive our EBML meta-training
objective as below by plugging the two EBMs defined in Eqn. (6) and Eqn. (7) into Eqn. (5). The
derivation shares the spirit with Eqn. (4), and more details can be found in Appendix A.1.

argmax
ω,ψ,λ

ET i∼PID

[
Eϕi∼qψ(ϕi|T si )[

Ni∑
j=1

−Eω(xij , yij ,ϕi) + Epω(x′,y′|ϕi)[Eω(x
′
ij , y

′
ij ,ϕi)]]

− Eqψ(ϕi|T si )[Eλ(ϕi)] + Epλ(ϕ′
i)
[Eλ(ϕ

′
i)] +H(qψ(ϕi| T

s
i ))

]
. (8)

Solving the above meta-training objective involves sampling of x′, y′ from pω and ϕ′
i from pλ, in

order to compute the expectations Epω(x′,y′|ϕi) and Epλ(ϕ′
i)

as Monte-Carlo averages. We follow
the similar SGLD sampling procedure in Eqn. (3). Besides, since the majority of state-of-the-art
meta-learning algorithms [8, 42, 1, 53] adopt the MAP estimation of the latent posterior qψ which is
deterministic, the last entropy term ofH essentially becomes zero and the expectations in the first
and second terms are trivial to solve. For this reason, we focus on base meta-learning algorithms
with MAP approximation in the following sections, which not only simplifies computation but also
maintains the state-of-the-art performance. We left a discussion on EBML with distributional qψ in
Appendix C.3. The complete pseudo codes for meta-training of EBML are available in Appendix E.

4.2 EBML for OOD Detection
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Figure 2: The roles of Eω and Eλ in En-
ergy Sum in detecting OOD tasks. Each dot de-
notes a task. Left: We perturb each sup-
port sample of a task T i by ηij ∼
Ni(0, σi) where we sample σi from [0, 1] uni-
formly. The y-axis shows the average energy
Exsij ,y

s
ij∼T si ,ηij∼Ni [Eω(x

s
i ,y

s
i ,ϕi)] and the x-

axis plots the variance σ2
i . Right: We first com-

pute the mean of the overall ID task latent prior
as ϕID =Eϕi∼pID [ϕi]. The y-axis shows the
energy Eλ(ϕID + ηi) where ηi ∼ N (0, 1) for
the i-th task and the x-axis plots the Euclidean
distance of the perturbed latent from ϕID.

Detecting an OOD task w.r.t. the meta-training dis-
tribution constitutes an essential first step to guard
successful meta-generalization. A straightfor-
ward solution is density-based OOD detection,
for which the OOD score of a task following the
Bayesian principle boils down to its log-likelihood
log p(Xs

i ,Y
s
i )=logEϕi∼pλ(ϕi)[pω(X

s
i ,Y

s
i |ϕi)].

Despite the meta-learned latent prior EBM pλ(ϕi)
that is readily available, estimating this log-
likelihood still presents daunting challenges. First,
when the latent prior is expressed in the form of a
distribution over model parameters in very high di-
mension, MCMC sampling from pλ(ϕi) is almost
computationally infeasible. Second, especially
when the latent prior exhibits multi-modality, draw-
ing a considerable number of samples to achieve
a low-variance MC estimation of the integral is
prohibitively costly.

On this account, we define the OOD score of a task
to be faithful to our proposed ELBO approximation
of its log-likelihood in Eqn. (5), which gives

Eqψ(ϕi| T si )
[ Nsi∑

j

Eω(x
s
ij , y

s
ij ,ϕi) + Eλ(ϕi)

]
. (9)

We dub this OOD score tailored to EBML Energy Sum, whose full derivation is deferred to
Appendix A.2. This energy sum enjoys not only the theoretical advantage, i.e., being provably
proportional to the negative log-likelihood of a task, but also simple computation benefits. During
meta-testing, evaluating the score of Eqn. (9) for each task requires only a single forward pass of the
support set samples through the two energy functions.

More remarkably, the energy sum is intuitively appealing in the sense that it characterizes (1) how
far a task is from the overall ID meta-training task distribution via the latent prior energy score Eλ
and (2) how difficult it is to predict the observed support set conditioned on ϕi via the task-specific
data energy score Eω. First, the terms in the last line of Eqn. (8) for learning the latent prior EBM
altogether correspond to maximizing the likelihood ET i∼p(T ) Eqψ(ϕi|T si )[log pλ(ϕi)], which enforces
the latent prior energy score Eλ to capture the overall ID meta-training distribution. As illustrated in
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Figure 2 (right), the further away a task is from the overall ID meta-training distribution measured in
Euclidean distance, the larger the energy score Eλ is as expected. Second, conditioned on even the
ID latent prior ϕi, those tasks with support samples as scattered as possible are especially difficult to
predict. These tasks are considered to be OOD, as evidenced in higher values of Eω in Figure 2 (left).

4.3 EBML for OOD Generalization

The Energy Sum proposed in Section 4.2 develops OOD awareness of a meta-testing task, based on
which we differentiate our meta-testing procedures for effective meta-generalization.

Meta-testing for ID tasks Given the support set T s of a meta-testing task, prediction of the label for
its query xqj amounts to maximizing our approximated log-likelihood (see Eqn. (5)) of the task, i.e.,

yqj = argmin
y

Eϕ∼qψ(ϕ| T s)
[
Eω(x

q
j , y,ϕ) + Eλ(ϕ)

]
. (10)

Provided that the task has already been identified within the ID region, the second energy Eλ(ϕ) is
negligibly small. Consequently, we reduce the above optimization problem to consider only the first
term Eω(x

q
j , y,ϕ), and solve it via gradient descent. We provide the pseudo codes in Appendix E.

Meta-testing for OOD tasks For an OOD task, its meta-learned prior ϕ ∼ qψ(ϕ| T s) is located out
of the ID meta-training task distribution and likely loses its effectiveness. We seek a solution that
adapts this inadequate meta-learned prior back to the ID region, so as to make the most of the ID latent
priors with guaranteed meta-generalization. This shares the idea with classifier editing in [45], where
the editing parameters are trained to map an OOD image to an ID one for improving generalization.
Therefore, we introduce task-specific parameters ζ which are optimized via the following,

argmin
ζ

Eϕ∼qψ∪ζ(ϕ| T s)
[ Ns∑
j=1

Eω(x
s
j , y

s
j ,ϕ) + max(Eλ(ϕ)−m, 0)

]
, (11)

where m is a hyper-parameter. We find that setting m as the empirical average of the latent prior
energy over all ID training tasks works well in practice, i.e., m = EpID [Eϕi∼qψ(ϕi| T si )[Eλ(ϕi)]].
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Figure 3: Illustration of the OOD task adap-
tation process on OOD domains of the meta-
dataset [49] where each dot in (a) represents
an OOD task in latent space ϕ. Minimizing
Eqn. (11) leads to (a) the latent ϕ of the OOD
task moving to the ID region (contour plot), (b)
the Euclidean distance between class prototypes
enlarging, and consequently (c), the classifica-
tion accuracy on query samples increasing.

As a result of optimizing the second term in
Eqn. (11), the task-specific parameters ζ enable
qψ∪ζ(ϕ| T s) to accommodate for OOD tasks by
mapping the meta-learned prior back to ID meta-
training tasks; while optimizing the first term
preserves the data-level predictive ability of the
model. We highlight that the task energy mini-
mization approximates the minimization of a KL
divergence between the task-specific posterior and
the meta-learned prior, thereby inducing a meta-
regularization effect during adaptation. See Ap-
pendix A.3 for details. Eventually, we use the
adapted task-specific parameters for final predic-
tion on query samples as in Eqn. (10). Pseudo code
for the EBML adaptation and inference algorithms
described above can be found in Appendix E.

In Figure 3, we visualize the adaptation process
when optimizing Eqn. (11) for OOD few-shot clas-
sification tasks in Meta-dataset [49]. As the prior
energy of these OOD tasks decreases, their ϕi gradually shift towards to the ID region as desired.
Within this region, minimizing the first term in Eqn. (11) continuously improves generalization. In
contrast, given only a few support samples, existing SOTA methods that solely rely on feed-forward
inference [1] and gradient-based optimization [28] for OOD task adaptation without a prior are both
prone to overfitting. We provide more empirical evidence on this in Appendix C. On the other hand,
meta-learning a BNN, which imposes a prior distribution on the parameter space during adaptation
may be computationally cumbersome and often lead to sub-optimal performance in comparison to
their non-Bayesian counterparts.
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5 Experiments

In the experiments, we test EBML on both few-shot regression and image classification tasks in
search for answers to the following key questions: RQ1: Whether the improved expressiveness of
EBML over traditional Bayesian meta-learning methods can lead to a more accurate model of the
meta-training ID task distribution, hence a more reliable OOD task detector. RQ2: Whether Energy
Sum can be an effective score for detection of OOD meta-testing tasks. RQ3: Whether EBML
instantiated with SOTA algorithms can exploit the meta-learned EBM prior in OOD task adaptation
to achieve better prediction performance on OOD tasks.

5.1 Implementation Details

We now discuss two instantiations of the EBML framework with SOTA meta-learning algorithms for
regression and classification. We illustrate our approach in Figure 4 below and defer a more detailed
description for our models to Appendix B.

Figure 4: Overview of the EBML framework. The task latent variable ϕi is inferred from the support
set T si following the implementation of the base algorithm. The data and task energy scores are
evaluated by the data and prior EBMs Eω1

and Eλ, respectively; while the query labels are predicted
by the classifier pω2

of the base algorithm.

Regression. Take CNPs [8] as an example base model. CNPs implements qψ(ϕi| T si ) as a neural
network encoder that outputs a function embedding in finite vector form, i.e., ϕi ∈ RD, from a
given support set, T si . That said, we let the prior EBM to model the empirical distribution over such
finite-dimension function embedding, i.e., Eλ(ϕi) : RD → R.

Classification Many cross-domain few-shot classification algorithms [28, 42, 1] rely on a metric-
based classifier for prediction, which assigns query sample to the class with nearest prototype to
the query representation based on some distance measure. In these cases, it is natural to specify the
task-specific latent ϕi as the set of class prototypes in each ID training task. Since ϕi is a set of
variables, we build the prior EBM model as a permutation-invariant neural network function. Suitable
choices include DeepSets [56] and set transformer [26].

To align with the state-of-the-art prediction performance, we follow the practice in [50, 37] to train
another decoder ω2 with the loss function (e.g., cross entropy) in the base meta-learning model, which
serves as a surrogate for Eω(x

q
j , y, ϕ) in Eqn. (10) and Eqn. (11). We use this decoder for prediction.

Baseline Models For regression, we compare against: 1) MAML [6] which is a deterministic meta-
learning method, and 2) Bayesian meta-learning methods that use Gaussians for prediction or prior,
including ABML [41], MetaFun [53], CNPs [8] and F-PACOH-GP [43]. For classification, we con-
sider Simple-CNAPs [1] and TSA [28], which respectively resort to amortized variational inference
and gradient-based optimization for estimating the task-specific parameters from the support set.
Both are SOTA cross-domain few-shot classification approach on the Meta-dataset [49] benchmark.
For more experimental details, hyper-parameter configurations, and additional experimetal results,
please refer to Appendix B and C.
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5.2 Datasets and Evaluation Metrics

Sinusoids Few-shot Regression We consider 1D sinusoids regression tasks in the form y(x) =
Asin(B(x+C)). For ID meta-training, we consider frequencyB = 1, while sample amplitudeA and
phase C uniformly from a set of equally-spaced points {1, 1.1, 1.2, ..., 4} and {0, 0.1, 0.2, ..., 0.5π},
respectively. Each training task consists of 2 to 5 support and 10 query points with x uniformly
sampled from X ∈ [−5.0, 5.0]. During testing, we evaluate the models on 500 ID and OOD tasks
each with 512 equal-distant query points in X . For ID testing, we expand the range of the tasks
by uniformly sampling A ∈ [1, 4] and C ∈ [0, 0.5π]. For OOD tasks, we randomly change either
the phase distribution to C ∈ [0.6π, 0.75π], amplitude to A ∈ [0.1, 0.8] ∪ [4.2, 5.0] or frequency to
B ∈ [1.1, 1.25]. Details for the multi-sinusoids regression experiment can be found in C.1. We use
MSE and negative log-likelihood on query samples to evaluate the regression performance.

Drug Activity Prediction Few-shot Regression In each task, we aim to predict the drug-target
binding affinity of query molecular compounds given 10 to 50 labelled examples from the same
domain defined by molecular size. We use the lbap-general-ic50-size ID/OOD task split in the
DrugOOD [21] benchmark, which divides the molecules into 222/145/23 domains by molecular
size for ID Train / ID Test / OOD Test, respectively. The regression performance is evaluated by the
square of Pearson coefficient (R2) between predictions and the ground-truth values. We report the
mean and median R2 on 500 tasks sampled from ID and OOD testing domains.

Meta-dataset [49] 5-way 1-shot Classification This experiment considers image classification
problems on Meta-dataset [49]. Each task contains up to 10 query images per class from the same
domain. Following the current state-of-the-art practice [28, 1], we use Aircraft, dtd, cub, vgg-flower,
fungi, quickdraw and omniglot as the ID datasets for meta-training and meta-testing, while traffic,
mscoco, cifar10, cifar100 and mnist are treated as OOD datasets for meta-testing only.

OOD Task Detection Evaluation We compare the OOD task detection performance of Energy
Sum against several model-agnostic OOD detection baselines. Concretely, for classification, we
compare against max-softmax score [16], ODIN [30], MAH [27], and max-logits score [15]; for
regression, we consider Averaged Bayesian prediction uncertainty in standard deviation (Std) on
support samples, and Averaged Support samples Negative Log-Likelihood (SNLL) under model’s
task-specific predictive probability, i.e., −Eϕi∼qψ(ϕi|T si )[Ej [log pω(y

s
ij |xsij ,ϕi)]] for baselines and

Eϕi∼qψ(ϕi|T si )[Ej [Eω(y
s
ij , x

s
ij ,ϕi)]] for EBML. Following common practice [17, 16], we report

AUROC, AUPR and FPR95 for OOD detection performance. Details for these metrics can be found
in Appendix B.1.

5.3 OOD Detection Results

Energy sum performs best in OOD task detection. Table 1 and 8. The proposed energy sum
further improves our SNLL-only results in all three OOD detection metrics - with 15.2% and 11.8%
significant reduction in FPR95, outperforming the best baseline methods by 20.0% and 39.1%, in
single and multi-sinusoids situations respectively. In Table 2 for OOD classification task detection,
Energy Sum consistently results in superior OOD detection performance, outperforming the best
baselines by large margins of 36.84% and 20.19% in FPR95 for Simple-CNAPs and TSA, respectively.

Table 1: OOD task detection performance on single-sine and DrugOOD [21] few-shot regression
tasks.

OOD Scores Models Sinusoids DrugOOD
AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓

Std

ABML [41] 50.14 54.80 97.20 57.82 50.31 74.80
F-PACOH-GP [43] 49.52 51.30 94.20 81.74 71.99 32.00
CNPs [8] 22.72 35.34 99.60 93.56 89.58 13.00
Metafun [53] 76.57 80.33 82.40 85.68 80.55 58.18

SNLL

ABML [41] 82.48 81.31 61.00 80.99 79.12 47.60
F-PACOH-GP [43] 91.78 93.23 52.40 37.73 45.01 85.21
CNPs [8] 95.63 96.46 34.22 17.25 34.07 91.40
Metafun [53] 96.25 97.11 32.00 83.54 85.54 65.17
EBML-CNPs (Ours) 96.46 97.41 29.40 99.71 99.71 2.20

Energy Sum EBML-CNPs (Ours) 97.74 98.31 14.20 99.79 99.78 1.40
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Modelling the joint distribution improves OOD detection under Domain-shift. In Table 1
DrugOOD regression tasks, using either our SNLL or Energy Sum as OOD scores can achieve better
detection performance than baselines. In particular, our method outperforms the best OOD detection
results obtained using Gaussian SNLL and Std by 43.84% and 11.6% in FPR95, respectively.

Figure 5: Predictive distribution of Middle an
data EBM vs Right a Gaussian for an ID task.

Qualitative Illustration. In Figure 5, we visualize
the predictive distribution p(yij |xij ,ϕi) learned us-
ing an EBM decoder and a Gaussian decoder on a
sampled ID multi-sinusoids task. The EBM clearly
shows two prediction modes at all non-overlapping
positions, whereas the Gaussian decoder is unable
to model the multi-modality, resulting in a blurry
prediction.

Computational Complexity Analysis. We conduct a computational complexity analysis for EBML
by comparing its wall-clock training time and convergence to baselines in Figure 6 below. EBML-
CNPs eventually achieves better OOD detection performance than baseline CNPs meanwhile match-
ing its regression performance at all training epochs. In Table 15 Appendix C.4, we show EBML-
CNPs is computationally cheaper and faster than traditional Bayesian methods, namely, F-PACOH-
GP [43] which requires matrix inversion for inference with Gaussian processes prior, and ABML [41]
which imposes a Gaussian prior over the entire parameter space of the model.
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Figure 6: Left : Wall-clock convergence in seconds, and Right: performance vs number of training
epochs, for EBML-CNPs vs CNPs in single-sinosoid few-shot regression tasks. The plots show
the regression (MSE ↓) and combined OOD tasks detection (1-AUROC)+(1-AUPR)+FPR95 ↓
performance on single sine few-shot regression tasks during training. Curves are moving averages
with window size 3. EBML-CNPs achieves better final performance than CNPs.

Energy sum achieves better OOD detection results with EMB prior than Gaussian. In Table 3
and 9, we investigate the contribution of the prior EBM in improving the modelling of meta-training
task distribution. We train CNPs and ABML using diagonal Gaussian distribution as the prior in
ELBO, and compute OOD scores as (a) SNLL, and (b) the sum between SNLL and the NLL of
task-specific latent evaluated under the learned Gaussian prior (indicated by +Gauss Prior). The
results show that energy sum using an EBM prior outperforms all ablated models. The OOD detection
performance of our model benefits from adding the prior EBM energy to the data EBM energy
(SNLL), resulting in the most reduction in FPR95 on both single and multi-sinusoids tasks (15.2%
and 11.8%, respectively). This suggests the improved expressive of EBM over simple distributions
can indeed lead to learning a more accurate model of the meta-training ID task distribution.

Energy sum achieves better OOD detection results when learning the joint distribution In
Table 16, we compare EBML-joint, which is exactly our proposed training procedure in the paper,

Table 2: OOD task detection performance on Meta-dataset
5-way 1-shot classification tasks.

OOD Scores Simple-CNAPs [1] TSA [28]

AUROC↑ AUPR↑ FPR95↓ AUROC↑ AUPR↑ FPR95↓
max-softmax [16] 85.50 85.54 65.43 89.25 87.14 46.02
max-logits [15] 50.00 70.83 95.00 50.14 44.64 95.28
ODIN [30] 90.49 89.42 43.57 92.02 90.18 37.36
MAH [27] 71.18 69.76 90.52 94.54 93.95 23.83
Domain Classifier 83.10 73.18 53.17 n/a n/a n/a

EBML Energy Sum 97.01 94.92 6.74 99.10 98.48 3.64

Table 3: Ablation study on Energy Sum
for OOD detection on single-sinusoids.

Models OOD Scores Sinusoids
AUROC↑ AUPR↑ FPR95↓

ABML [41] SNLL 82.48 81.31 61.00
+Gauss Prior 86.95 86.64 52.20

CNPs [8] SNLL 94.81 96.34 38.40
+Gauss Prior 94.61 96.10 34.40

EBML-CNPs SNLL 96.46 97.41 29.40
+EBM Prior 97.74 98.31 14.20
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Table 4: Few-shot regression performance on single-sinusoids and DrugOOD [21] tasks.

Models Sinusoids DrugOOD

ID MSE ↓ ID Mean R2 ↑ ID Median R2 ↑ OOD Mean R2 ↑ OOD Median R2 ↑
F-PACOH-GP [43] 0.068±0.016 0.492 0.454 0.055 0.027
Metafun[53] 0.009±0.002 0.537 0.541 0.054 0.027
CNPs [8] 0.009±0.002 0.540 0.549 0.066 0.046
ABML [41] 0.127±0.013 0.452 0.443 0.051 0.029
MAML [6] 0.119±0.013 0.462 0.475 0.055 0.024

EBML-CNPs 0.009±0.002 0.533 0.553 0.071 0.043

and EBML-conditional, which follows the same training with EBML-joint but models p(Y | X)
instead of p(X,Y). With all other factors being the same, EBML-joint significantly outperform
EBML-conditional in OOD detection on DrugOOD regression tasks with domain shift in X. This
supports our motivation for using the joint distribution instead of the conditional distribution for
training a potentially better OOD detector. Detail of this ablation study can be found in Appendix D.

5.4 OOD Generalization Results

Table 5: Classification performance
on 5-way 1-shot tasks for both ID
and OOD domains in Meta-dataset.

Datasets TSA EBML-TSA
[28] (Ours)

Omniglot 98.63±0.26 98.67±0.26

Textures 51.93±0.87 52.35±0.88

Aircraft 78.91±0.86 78.47±0.86

Birds 75.02±0.90 75.52±0.90

VGG Flower 80.37±0.80 80.30±0.83

Fungi 70.89±0.93 72.29±0.94

Quickdraw 79.02±0.84 80.27±0.85

MSCOCO 52.28±0.94 53.03±0.97

Traffic Sign 57.40±0.94 58.85±1.01

CIFAR10 49.16±0.82 50.04±0.89

CIFAR100 62.25±1.01 62.77±1.05

MNIST 74.72±0.83 76.08±0.88

Avg ID 76.40 76.84
Avg OOD 59.16 60.15
Avg All 69.22 69.89

EBML achieves SOTA regression performance. In Table 4,
for single-sinusoids, EBML is able to match the MSE of the
best-performing baseline methods; while on multi-sinusoids
in Table 7, EBML obtains the lowest ID NLL, specifically
0.58 lower than the best baseline, thanks to our energy-based
decoder which is sufficiently expressive for modelling the multi-
modality at each input.

Task adaption using Eqn. (11) improves few-shot classifica-
tion performance. In Table 5, we report the average classifi-
cation accuracy computed over 600 test tasks per ID and OOD
domains. In meta-testing, we obtain classification results for
EBML-TSA by running gradient descent on the objective in
Eqn. (11) to optimize the task-specific modules in TSA from
scratch. With this addition of prior energy in the OOD adap-
tion objective, EBML-TSA further improves TSA results in
5/7 ID domains and all 5 OOD domains. Additional OOD
classification results in Table 11 Appendix C further confirm
the superiority of our proposed OOD task adaptation strategy
in Eqn. (11) over prior baselines.

6 Conclusion and Limitation

This paper proposes a new energy-based meta-learning (EBML) framework for the first time, which
directly characterizes any arbitrary meta-training task distribution using two data and prior energy
functions. EBML is compatible with many existing SOTA meta-learning algorithms and allows
both detection and adaption of OOD tasks. The sum of the two learned energy functions gives an
unnormalized probability distribution proportional to the underlying task likelihood, deployable as
OOD scores. The experiment results show the superiority of Energy Sum over traditional methods in
detecting both OOD regression and classification tasks, and the possibility of achieving improved
OOD adaptation performance with EBML through minimizing the task energy. One limitation of
EBML is that our current OOD task adaptation strategy does not consider the effect of negative
transfer, as some OOD tasks may benefit from adaptating from scratch without ID energy prior
regularization. Thus, in future works, we are interested in designing task-specific adaptation strategies
for EBML that can selectively adapt OOD tasks for better performance.
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A Derivation for EBML

A.1 Derivation for Training Objective in Eqn. (8)

We start the derivation from maximizing the ELBO (Eqn. (5)) for a single training task T i w.r.t. the
parameters of the EBMs and the task latent posterior distribution, i.e., λ, ω and ψ,

argmax
λ,ψ,ω

log p(T i)
Eqn. (5)
====⇒ argmax

λ,ψ,ω
Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]︸ ︷︷ ︸

(I)

−KL(qψ(ϕi| T si )||pλ(ϕi))

(12)
where qψ , pω and pλ denote the model distributions of the latent posterior, the data EBM and the prior
EBM, respectively. Recall pλ and pω are EBMs where pω(Xi,Yi | ϕi) =

∏
j

exp (−Eω(xij ,yij ,ϕi))
Z(ω,ϕi)

and pλ = exp (−Eλ(ϕi))
Z(λ) . We rewrite the KL term as

−KL(qψ(ϕi| T si )||pλ(ϕi)) = −Eqψ(ϕi| T si )
[
log

qψ(ϕi| T si )
pλ(ϕi)

]
(13)

= −Eqψ(ϕi| T si )
[
log qψ(ϕi| T si

]
− Eqψ(ϕi| T si )

[ 1

log pλ(ϕi)

]
(14)

= H(qψ(ϕi| T si )︸ ︷︷ ︸
(III)

+Eqψ(ϕi| T si )[log pλ(ϕi)]︸ ︷︷ ︸
(II)

(15)

The two log-likelihood terms for EBMs, (I) and (II), can be rewritten using the learning gradient in
Eqn. (4), i.e.,

Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]
Eqn. (4)
====⇒Eϕi∼qψ(ϕi|T si )

[ Ni∑
j

−Eω(xij , yij ,ϕi)

+ Epω(x′,y′|ϕi)[Eω(x
′
ij , y

′
ij ,ϕi)]

]
(16)

Eqψ(ϕi| T si )[log pλ(ϕi)]
Eqn. (4)
====⇒Eqψ(ϕi|T si )

[
− Eλ(ϕi) + Epλ(ϕ′

i)
[Eλ(ϕ

′
i)

]
. (17)

Combining with the entropy term in (III) and take the expectation w.r.t. the training task distributing
PID we have our training objective in Eqn. (8).

A.2 Derivation for Energy Sum in Eqn. (9)

The log-likelihood of a task T i writes

log p(T i) = log

∫ Ni∏
j=1

p(xij , yij |ϕi)pλ(ϕi) dϕi. (18)

≥ Eϕi∼qψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)]− KL(qψ(ϕi| T si )||pλ(ϕi)) (19)

= Eqψ(ϕi| T si ) [log pω(Xi,Yi|ϕi)︸ ︷︷ ︸
∝ − Eω(Xi,Yi, ϕi)

] + Eqψ(ϕi| T si )[log pλ(ϕi)︸ ︷︷ ︸
∝ − Eλ(ϕi)

] +H(qψ(ϕi| T si )
]
, (20)

which is lower-bounded by the ELBO in Eqn. (20) characterized by the learned qψ, pω and pλ. The
ELBO is proportional to the sum of two energy functions and the entropy of the posterior distribution
qψ , all of which can be easily calculated via feed-forward passes of the training samples.

Since the majority of the state-of-the-art meta-learning algorithms (including CNP [8] and SimpleC-
NAPS [1]) adopt the MAP estimation of the posterior qψ which is determinisitc, the entropy essential
becomes zero, and the expectations Eqψ(ϕi|T si ) in the first and second terms in Eqn. (20) simplify to
energy function evaluation at Xi,Yi and ϕi, respectively. Finally, we negate Eqn. (20) so that the
OOD scores for in-distribution tasks are lower than that of the out-of-distribution ones.
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A.3 Derivation for Eqn. (11) as an Approximation to Bayesian Posterior Inference

Given a new test task T i, Bayesian inference aims to infuse the meta-learned prior knowledge with
the observed support set Xs

i ,Y
s
i for inferring a small set of unknown task-specific parameters ζ . This

is akin to maximizing the log-likelihood of the support set w.r.t. the task-specific parameters ζ which
defines the posterior latent distribution qψ∪ζ(ϕi | T si ) under the regularization of a prior. First, the
tractable ELBO for the prior predictive likelihood is

log pλ,ψ,ω(T si ) = log

∫ Nsi∏
j=1

pω(xij , yij |ϕi)pλ(ϕi) dϕi. (21)

≥ Eqψ(ϕi| T si ) [
Nsi∑
j=1

log pω(xij , yij |ϕi)]− KL(qψ(ϕi| T si )||pλ(ϕi)). (22)

Next, we introduce the task-specific parameter ζ in the latent posterior and formulate the Bayesian
posterior inference objective as

argmin
ζ

Eqψ∪ζ(ϕi| T si ) [−
Nsi∑
j=1

log pω(xij , yij |ϕi)] + KL(qψ∪ζ(ϕi| T si )||pλ(ϕi)). (23)

Assuming a maximum a posterior (MAP) estimate of the task-specific latent distribution which
approximates qψ∪ζ(ϕi| T si ) by a Dirac-delta function qψ(ϕi| T si ) = δ(ϕi − ϕ̂i | T si ). As a
result, the second KL term reduces to a likelihood evaluation, i.e., KL(qψ(ϕi| T si )||pλ(ϕi)) =

Eqψ(ϕi| T si )[log qψ(ϕi| T
s
i )

pλ(ϕi)
] = − log pλ(ϕi) = Eλ(ϕi) + log Z(λ). Since the (log-

)partition function log Z(λ) is a constant w.r.t. the argmin parameter ζ, we then have
argminζ KL(qψ(ϕi| T si )||pλ(ϕi)) = argminζ Eλ(ϕi). From here, we see that minimizing the
task prior energy approximates the minimization of the KL-divergence between the task-specific
posterior qψ∪ζ and the meta-learned ID prior pλ in the Bayesian posterior inference objective, thus
it acts as a meta-regularizer to combat over-fitting in adaptation. In practice, we found that using a
margin loss for this prior energy minimization, i.e., argminζ max(Eλ(ϕi)−m, 0), can yield better
empirical performance.

While for the first log-likelihood term inside the expectation, −
∑Nsi
j=1 log pω(xij , yij |ϕi) which is

equivalent to the sum of data energy scores
∑Nsi
j=1[Eω(xij , yij , ϕi) + log Z(ω, ϕi)], we use the

decoder ω2 with the task-specific prediction loss i.e., cross-entropy loss, in the base meta-learning
algorithm as a tractable surrogate, as discussed in implementation of the Experiment section 5
and also in Appendix B.4.1. This thus maintains the data-level predictive ability of model during
adaptation.
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B Experiment Details

B.1 OOD Detection Evaluation Metrics

Conventionally [17, 16, 27], OOD detection is treated as a binary classification problem in which the
trained detector is expected to assign a positive label for an OOD task if its estimated OOD score
exceeds some threshold τ To evaluate the performance of the OOD detector, we use three metrics:
area under the receiver operating characteristic curve (AUROC), area under the precision-recall curve
(AUPR), and the false positive rate at N% true positive rate (FPRN), where N=95 in our experiments.

As discussed in [17], the AUROC and AUPR are holistic metrics that summarize the performance of
a detection method across multiple thresholds. The AUROC can be thought of as the probability that
an OOD example is given a higher OOD score than an ID example. Thus, a higher AUROC is better,
and an uninformative detector has an AUROC of 50%. The AUPR is useful when OOD inputs are
infrequent, as it takes the base rate of OOD inputs into account.

Whereas the previous two metrics represent the detection performance across various thresholds,
the FPRN metric represents performance at one strict threshold. By observing performance at a
strict threshold, we can make clear comparisons among strong detectors. The FPRN metric is
the probability that an in-distribution example (ground-truth negative sample) raises a false alarm
(detected as a positive sample) when N% of ground-truth OOD examples (positive samples) are
correcty detected, so a lower FPRN is better. Capturing nearly all anomalies with few false alarms
can be of high practical value.

B.2 Single and Multi-sinusoid Regression

Model Architecture Both the the data EBM Eω(x,y, ϕi) and the prior EBM are MLPs. Follow
the encoder implementation in CNPs [8], qψ(ϕi| T si ) composes of a within-task mean pooling
operation sandwiched between two arbitrary learnable transformations parameterized by MLP,
i.e., qψ(ϕi| T s

i ) = MLPψ1(
1
Nsi

∑Nsi
j=1 MLPψ2([x

s
ij , y

s
ij ])). The output of qψ is the task latent variable

ϕi ∈ R2.

Hyperparameters We use a training batch size of 50 and learning rate of 0.0005 for all methods.
The additional method-specific hyperparameters are stated below

Metafun [53] num-inner-loop: 5; initial representation: zero; outer learning rate: 10−4; initial
inner learning rate: 0.1; Dropout rate: 0.0; Orthogonality penalty weight: 0.0; L2 penalty weight:
0.0.
MAML [6] batch size: 4; num-inner-loop: 5; inner learning rate: 0.01; outer learning rate: 0.001;
ABML [41] batch size: 4; num-inner-loop: 5; inner learning rate: 0.005; outer learning rate:
0.001; alpha 1.0; beta 0.01; num reparameterizatio samples: 4;
F-POACH-GP [43] prior outputscale: 2.0; prior lengthscale: 0.2; prior weight: 0.001; learnable
prior mean: True; learnable prior covariance: True.
EBML-CNPs Prior SGLD η: 0.01; Data SGLD η: 0.001; num-SGLD-iter: 20; energy L2 penalty
1.0;

B.3 Drug Activity Prediction

Preprocessing Molecular Graph Inputs Each input x is a SMILES representation of a chemical
molecule, which essentially is a list of string characters of variable length. To transform the SMILE
representation into numerical values, we use a pre-trained SMILES-transformer [18] for converting
the sring input x into vector representation x̃ in R1024. We treat this x̃ as the inputs for all methods.

Model Architecture We use the same EBML-CNPs architecture as in the sinusoids experiments.
However, we expand the latent variable dimension to R128, and the number of neurons in each hidden
layer to 256. Furthermore, additional Batch Normalization layers [20] are interleaved with layers of
the MLPs.

Hyperparameters We use a training batch size of 10 and learning rate of 0.0005 for all methods.
The additional method-specific hyperparameters are stated below
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Metafun [53] num-inner-loop: 5; initial representation: zero; outer learning rate: 10−4; initial
inner learning rate: 0.1; Dropout rate: 0.0; Orthogonality penalty weight: 0.0; L2 penalty weight:
0.0.

MAML [6] batch size: 4; num-inner-loop: 5; inner learning rate: 0.001; outer learning rate:
0.001;

ABML [41] batch size: 4; num-inner-loop: 5; inner learning rate: 0.001; outer learning rate:
0.001; alpha 1.0; beta 0.01; num reparameterizatio samples: 4;

F-POACH-GP [43] prior outputscale: 1.0; prior lengthscale: 0.5; prior weight: 0.001; learnable
prior mean: True; learnable prior covariance: True.

EBML-CNPs Prior SGLD η: 0.1; Data SGLD η: 0.1; num-SGLD-iter: 40; energy L2 penalty
0.1;

B.4 Meta-dataset Few-shot Classification

B.4.1 Details of EBML-SimpleCNAPs and EBML-TSA

Model Architecture TSA [28] pre-trains a feature representation using available ID training domains,
and incooperates additional task-specific adaptation modules at test time in the form of residual-
connected transformation matrices to each convolution block. The parameters of these modules
are inferred by gradient descent on the support set from scratch at meta-testing. The transformed
feature representations of the support set samples are then used to build the class prototypes in
a non-parametric classifier for inference of the query sample labels. SimpleCNAPs [1] also first
pre-trains a feature extractor on a large dataset, i.e., ImageNet. However, unlike TSA, SimpleCNAPs
meta-learns task-specific adaptations during meta-training by learning a parametrized task-encoding
function that estimates the task-specific modules in the form of additional FILM parameters from the
support set . Similar to TSA, the adapted support set features are used to construct the class centers
in a non-parametric predictive function for classification of the query samples.

Thus for both methods, the set of prototypes in each ID training task resemble a task-specific
predictive function, and is a suitable choice as the meta-learned prior knowledge. By specifying the
latent variable ϕi to be a set of class prototypes used in the cosine classifier of each ID meta-training
task, our EBM prior pλ(ϕi) resembles a distribution over task-specific predictive functions from the
ID domains. The architecture for the Prior EBM is depicted in Figure 7.

Figure 7: Model architecture for the prior EBM for classification.

To simultaneously achieve the best of both classification and OOD detection, we follow similar
strategies in [50, 37] which learn an another decoder for prediction. The modified EBML architecture
is shown in Figure 8.

Hyper-parameters We use the reported hyperparameters in TSA [28] and SimpleCNAPs [1] for
training the base models. We report here the additional hyperparameters specific to EBML below in
Table 6, which are found on the validation split of Meta-dataset [49].
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Figure 8: Overview of the EBML framework for image classification tasks. The task latent variable
ϕi are inferred from the support set T si following the implementation of the base algorithm. The data
and task energy scores are evaluated by the data and prior EBMs Eω1

and Eλ, respectively; while the
query labels are predicted by the classifier pω2

of the base algorithm. The feature extractor f is a
pre-trained ResNet-18 identical to the one used in SimpleCNAPs [1] and TSA [28].

Table 6: Hyperparameters for EBML on Meta-dataset 5-way 1-shot classification tasks.
Groups Hyperparameters Values

Training

num SGLD steps 40
Data SGLD η 1.0
Prior SGLD η 10.0
Energy L2 penalty 1.0
EBM Spectral Norm True

Adaptation

num steps 10
TSA learning rate β [28] 0.00091
TSA learning rate α [28] 0.000267
weight on prior energy 0.1
m in prior energy margin loss 0.4
optimizer Adam

B.4.2 Baseline OOD Detection Methods for Classification

We used the following traditional OOD input detection methods as baselines for computing the task
OOD scores in Table 2 main body of the paper. We compute the task OOD score for a task T i. as the
average instance-level OOD scores over its input images {x}Ni . More specifically:

max softmax score [16], is taken as the maximum softmax prediction probability over N
possible classes, that is Sŷ(x) = maxc

exp(logit[c](x))∑N−1
c=0 exp(logit[c](x))

.

ODIN [30], extends the softmax-score by introducing temperature scaling and input prepro-
cessing. More concretely, the input is perturbed following x̂ = x+ϵ sign(∇x logSŷ(x;T )),
which moves x in the direction that increases the temperature-scaled softmax score
Sŷ(x;T )), computed as maxc

exp(logit[c](x)/T )∑N−1
c=0 exp(logit[c](x)/T )

. The final ODIN confidence score

writes Sŷ(x̂;T )).
max logits score [15]. This is simply the maximal prediction logit of input image x, which
is an alternative to the max-softmax prediction score.
MAH Detector [27]. We compute the MAH OOD score of x as the Mahalanobis distance
from its feature representation to its nearest class mean which we estimate for each class
using the empirical average of training inputs in class c. The shared covariance matrix used
in estimating the Mahalanobis distance is computed on a subset of training samples from all
training classes.
Domain Selector. When given the domain-IDs during training, a few methods [34] on
Meta-dataset classification problems adapt a domain classifier network for inferring the task-
specific parameters from a set of candidate domain-specific feature modulation parameters.
The max softmax score of the trained domain selector can be used to compute the OOD
score for x.
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The perturbation magnitude ϵ and the temperature scale T used in ODIN and MAH are
determined using the validation set of meta-dataset, with a a grid-search over the parame-
ter space for ϵ ∈ {0, 0.00002, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005} and T ∈
{1, 2, 10, 50, 100, 200, 500}. ODID and MAH on average improves the OOD task detection re-
sults using max softmax and max logits scores for the same baseline model.
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C Additional Experiment Results

C.1 Multi-sinusoids Few-shot Regression and OOD Task Detection

Task generation The multi-target regression tasks are synthesised by superposing each generated
sinusoid from the ID and OOD distribution with a phase-shifted version of itself at a constant phase
lag of 0.3π, such that now in each task every input x has two possible target values y. We give both y
values for each x in the support set.

Results In Table 7, 8 we see that EBML-CNPs achieved both the best regression and OOD detection
performance. In Table 9, our proposed energy outperform all ablated models.

Table 7: Regression performance for multi-
sinusoids experiments.

Models ID NLL↓
ABML [41] 0.886±0.048

F-PACOH-GP [43] 1.289±0.023

CNPs [8] 0.865±0.069

Metafun[53] 0.874±0.051

EBML-CNPs 0.282 ±0.041

Table 8: OOD detection performance on multi-sinusoids
tasks.

OOD Scores Models AUROC↑ AUPR↑ FPR95↓

Std ABML [41] 74.14 72.15 73.67
Metafun [53] 76.52 77.34 88.12

SNLL

ABML [41] 54.75 56.32 99.60
F-PACOH-GP [43] 55.24 68.95 100.00
CNPs [8] 70.43, 79.71 92.4
Metafun [53] 79.21 77.03 90.98
EBML-CNPs (Ours) 92.77 94.25 46.20

Energy Sum EBML-CNPs (Ours) 94.91 96.15 34.60

Table 9: Ablation study for Energy Sum on Multi-sinusoids few-shot regression tasks.
OOD Scores Models AUROC↑ AUPR↑ FPR95↓
ABML [41] SNLL 54.75 56.32 99.60

+Gauss Prior 86.64 86.45 50.00

CNPs [8] SNLL 70.19 79.49 95.20
+Gauss Prior 82.90 87.23 76.60

EBML-CNPs SNLL 92.77 94.25 46.20
+EBM Prior 94.91 96.15 34.60

C.2 Meta-dataset 5-way-1-shot Classification and OOD Task Detection

C.2.1 TSA-EBML vs TSA on Unshuffled 5-way-1-shot Meta-dataset Tasks

Table 10: Classification performance
on Meta-dataset 5-way 1-shot tasks,
with shuffle_buffer_size=0. ∗ indicates
results reported by [28].

Datasets TSA∗ EBML-TSA
[28] (Ours)

Omniglot 96.3±0.4 96.3±0.5

Textures 54.5±0.9 54.5±0.8

Aircraft 79.6±0.9 79.0±0.9

Birds 74.5±0.9 75.3±0.9

VGG Flower 80.3±0.8 80.2±0.8

Fungi 75.3±1.0 77.1±0.9

Quickdraw 79.3±0.9 79.9±0.9

MSCOCO 59.9±1.0 60.2±1.0

Traffic Sign 57.2±1.0 58.2±0.9

CIFAR10 55.8±0.9 56.8±0.9

CIFAR100 63.7±1.0 64.6±1.0

MNIST 80.1±0.9 82.0±0.9

Avg ID 77.1 77.5
Avg OOD 63.4 64.4
Avg All 71.4 72.0

To ensure our few-shot classification results in Table 5 are
fair and up-to-date, we follow the latest evaluation protocols
in Meta-dataset which sets shuffle_buffer_size=1000, and test
TSA (reproduced using their official code) and EBML-TSA on
the same set of sampled testing tasks. However, the official
5-way-1-shot classification results of TSA (Table 8 in [28]) are
reported on an earlier version of Meta-dataset before the fix of
issue 54 2. This explains the observed differences between TSA
results in Table 5 and Table 8 in [28].

In this section, we verify that the improved classification per-
formance of EBML-TSA over TSA is indeed not a result of the
change in evaluation protocols in Meta-dataset. To do so, we
evaluate EBML-TSA under identical settings to TSA in Table 8
of [28], i.e., 5-way-1-shot settings with shuffle_buffer_size=0.

In Table 10, we compare our results with the official results
of TSA. The performance of both methods are largely similar
to that in Table 5, except that the classification accuracy for

2As mentioned in https://github.com/google-research/meta-dataset/issues/54, the shuffle_buffer_size was set
to zero in an earlier version of Meta-dataset which can lead to some biased results in evaluation.
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Table 11: 5-way-1-shot classification accuracy of OOD tasks in Meta-datasets [49].

Datasets SimpleCNAPs EBML-SimpleCNAPs URL EBML-URL
[1] (Ours) [29] (Ours)

MSCOCO 49.37±0.99 51.75±0.96 59.14±0.95 59.82±0.97

Traffic Sign 55.63±0.96 56.12±0.97 57.62±0.90 58.26±0.90

CIFAR10 50.79±0.85 51.16±0.89 54.37±0.83 54.39±0.86

CIFAR100 54.15±0.95 55.23±0.93 63.03±0.97 62.74±0.96

MNIST 80.25±0.85 81.01±0.85 78.85±0.86 79.78±0.87

both methods improved on a few datasets e.g., MNIST, MSCOCO. Noticeably, EBML-TSA still
outperforms TSA, on 5/7 ID domains (2/5 equal performance) with an average increase of 0.4% in
accuracy, and 5/5 OOD domains with an average improvement of 1.0%. The results validate the
effectiveness of our proposed method and verify that our methods indeed is not favoured by the latest
evaluation protocol in Meta-dataset.

C.2.2 5-way-1-shot OOD classification results in Meta-dataset [49] for more EBML variants

We instantiate EBML with two additional baseline Meta-learning algorithms including SimpleC-
NAPs [1] and URL [29] and report their 5-way-1-shot classification accuracy of OOD tasks in
Meta-datasets [49] in Table 11 above. OOD-adaptation for EBML is performed by optimizing
Eqn. (11) w.r.t. to the task encoder that produces the task-specific FiLM in SimpleCNPAS, and w.r.t.
the feature projection matrix in URL.

C.2.3 Classification Accuracy Trajectories During OOD Task Adaptation

In Figure 9 and 10, we visualize the average query set classification accuracy throughout the OOD
task adaptation for TSA and EBML-TSA. Results for TSA are produced using the official optimal
hyperparameters reported in [28]; while for EBML-TSA, we use the hyperparameters reported in
Table 6.

The y-axis in plot represents the average classification accuracy on the query set, while the x-axis
represents the steps during OOD adaptation. We observe that our objective (Blue) in Eqn. (11)
generally alleviates the over-fitting behaviour in the adaptation process caused by minimizing the
cross-entropy loss alone in TSA (Orange). This meta-regularization effect is more apparent on tasks
from the OOD domains.

Figure 9: TSA vs EBML-TSA query set classification accuracy during adaptation on ID datasets

C.2.4 More OOD Adaptation Baselines on Meta-dataset

In the experiment on Meta-dataset 5-way 1-shot classification tasks, we assigned pseudo-labels to
the query inputs and used them together with the labelled support set samples in calculation of the
class prototypes, hence the prior energy score for each task, in Eqn. (11). Therefore, In this study, we
compare our results with several baselines that also utilize the unlabelled query set in for adaptation,
including:
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Figure 10: TSA vs EBML-TSA query set classification accuracy during adaptation on OOD datasets

Query Entropy (TSA+QE), which minimizes the average entropy of the prediction distri-
bution on the query samples in addition to the support set classification loss.
Confidently-predicted Pseudo-labels (TSA+PL), which tunes a confidence threshold,
assigns query predictions over the threshold as the pseudo-labels, and then minimizes the
classification loss on the support set and these confidently-predicted query samples before
testing.

The optimal results are reported in Table 12. The results show that while the two baseline methods
exploiting the query set information can achieve better performance than TSA on some datasets, they
do not outperform EBML-TSA with using Eqn. (11) for task adaptation.

Table 12: Additional 5-way 1-shot classification results when using TSA with 1) entropy minimization
on the query set, and 2) cross-entropy on confidently-predicted pseudo-labelled query samples, for
OOD task adaptation.

Datasets EBML-TSA TSA+EM TSA+PL
Omniglot 98.67±0.26 98.81±0.26 98.25±0.25

Textures 52.35±0.88 52.12±0.87 51.91±0.87

Aircraft 78.47±0.86 79.40±0.86 79.09±0.86

Birds 75.52±0.90 74.76±0.89 75.07±0.90

VGG Flower 80.30±0.83 80.00±0.81 80.71±0.80

Fungi 72.29±0.94 70.95±0.93 70.44±0.94

Quickdraw 80.27±0.85 79.18±0.85 78.96±0.85

MSCOCO 53.03±0.97 52.24±0.94 52.55±0.94

Traffic Sign 58.85±1.01 57.13±0.95 57.06±0.94

CIFAR10 50.04±0.89 50.22±0.81 49.43±0.83

CIFAR100 62.77±1.05 62.47±1.00 62.70±0.99

MNIST 76.08±0.88 75.23±0.88 75.14±0.85

Avg ID 76.84 76.86 76.35
Avg OOD 60.15 59.46 59.38
Avg All 69.89 68.16 69.28

C.2.5 Baseline OOD Adaptation is Less Reliable without Sufficient Support Samples

We intend to use this experiment as an empirical evidence to support our argument on that SOTA
cross-domain meta-learning algorithms produce unreliable task-specific adaptation without sufficient
support set samples. We train Simple-CNAPs [1] and TSA [28] following the official experimental
setup of Meta-dataset [49], except that we have excluded ImageNet in the ID training datasets due to
limited computation resources.

Following [1, 28], in the varying-way varying-shot testing configuration, the number of classes in
each task varies between 5 to 50, while the total number of support samples per task varies between 5
to 500. The maximal number of support samples per class is capped at 100. We report the average
testing accuracy over 600 tasks for the varying-way varying shot and 5-way 1-shot settings in Table 13
below. We observe that the average classification accuracy for both ID and OOD domains generally
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decrease for 5-way 1-shot tasks, which suggests that the adaptation with without sufficient support
set samples is inherently difficult.

Table 13: Classification accuracy of SimpleCNAPs and TSA on meta-dataset for varying-way varying-
shot vs 5-way 1-shot meta-testing configurations.

Varying-Way Varying-Shot 5-Way 1-Shot
Datasets SimpleCNAPs [1] TSA [28] Simple-CNAPs [1] TSA [28]

Omniglot 91.61±0.57 94.77±0.41 97.87±0.27 98.63±0.26

Textures 65.47±0.71 77.06±0.67 44.11±0.83 51.93±0.87

Aircraft 81.28±0.69 88.56±0.51 65.08±0.89 78.91±0.86

Birds 73.80±0.81 80.86±0.77 66.21±0.98 75.02±0.90

VGG Flower 90.15±0.50 92.48±0.52 76.57±0.83 80.37±0.80

Fungi 44.82±1.13 66.49±1.02 50.95±0.95 70.89±0.93

Quickdraw 73.30±0.81 82.33±0.58 67.61±0.95 79.02±0.84

MSCOCO 35.19±0.94 55.22±1.09 38.78±0.79 52.28±0.94

Traffic Sign 42.59±1.01 82.60±0.97 50.84±0.90 57.40±0.94

CIFAR10 56.65±0.80 80.40±0.71 37.59±0.67 49.16±0.82

CIFAR100 44.13±1.10 70.38±0.97 46.11±0.89 62.25±1.01

MNIST 93.89±0.37 96.44±0.43 76.52±0.83 74.72±0.83

Avg ID 74.35 83.22 66.91 76.40
Avg OOD 54.49 77.01 49.97 59.16
Avg All 66.07 80.63 59.85 69.22

C.3 EBML with Probabilistic Posterior Distribution qψ(ϕi| T si )

Since EBML is a flexible plug-in, it is definitely compatible with those methods that use probabilistic
posterior qψ . However, we currently mainly focus on the MAP estimate in the main paper because the
majority of the state-of-the-art algorithms [8, 28] that EMBL has applied to resort to a MAP estimate
for qψ .

Nevertheless, in the Table 14 below, we show the results of EBML with Neural Processes (NPs) [9],
named EBML-NPs, on sine regression tasks. NPs parameterizes qψ as a multivariate Gaussian
distribution whose task-specific mean and standard deviation are determined by a learnable neural
network encoder conditioned on the task support set.

For training EBML-NPs, we include the the entropy termH(qψ(ϕi| T si )) in the training objective in
Eqn. (8), which has a closed-form solution when qψ is a Gaussian. We resort to the re-parameterization
trick for computing the expectations Eqψ in Eqn. (8). When using energy sum for OOD detection, we
also add the entropy termH(qψ(ϕi| T si )) for EBML-NPs for consistency.

Table 14: Regression and OOD detection performance on sinusoids few-shot regression tasks for
EBML-NPs vs EBML-CNPs.

OOD Scores EBML-NPs EBML-CNPs
MSE AUROC AUPR FPR95 MSE AUROC AUPR FPR95

SNLL
0.009±0.002

95.94 97.16 31.20
0.009±0.002

96.46 97.41 29.40
Energy Sum w/o Entropy 97.10 97.83 20.40 97.74 98.31 14.20
Energy Sum w Entropy 97.58 97.79 14.80 n/a n/a n/a

In Table 14, we conclude that EBML-NPs with probabilistic qψ achieves comparable performance
to its deterministic version, EBML-CNPs; there is no significant improvement in performance by
switching to a probabilistic qψ . Nevertheless, we observe that both the prior energy function and the
extra entropy terms bring in positive contribution to the OOD detection performance compared to
SNLL alone.

C.4 Computational Complexity Analysis

We conduct a computational complexity analysis for EBML by comparing its wall-clock training
time and convergence to baselines, results are shown above in Table 15 and Figure 11.
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Table 15: Training time in seconds. ∗ ABML is much slower due to the gradient-based inner loop
optimizations and learning with a Bayesian Neural Network, which makes it challenging to parallelize
training over a batch of tasks.

Sinusoids CNPs [8] EBML-CNPs f-PACOH-GP [43] ABML [41]

Training time / 500 tasks 0.67 1.83 3.13 11.95*

Meta-dataset SimpleCNAPs [1] EBML-SimpleCNAPs

Training time / 1000 tasks 1.02 1.75
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Figure 11: Left : Wall-clock convergence in seconds, and Right: performance vs number of
training epochs, for EBML-CNPs vs CNPs in single-sinosoid few-shot regression tasks. The plots
show the regression (MSE ↓) and combined OOD tasks detection (1-AUROC)+(1-AUPR)+FPR95 ↓
performance on single sine few-shot regression tasks during training. Curves are moving averages
with window size 3. EBML-CNPs achieves better final performance than CNPs.

From the results above, EBML is computationally cheaper and faster than the two Bayesian methods,
namely, F-PACOH-GP [43] which requires matrix inversion for inference with Gaussian processes
prior, and ABML [41] which imposes a Gaussian prior over the entire parameter space of the model.
Meanwhile, in Table 4 and 1 in the paper, EBML achieves the best regression and OOD detection
performance out of all baselines.
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D Empirical Study on Distribution Shift in the Input Space

In real-word applications, distribution shift in input space, i.e. the distribution shift in X, is a
very common phenomenon. Take AI-aided drug discovery as an example, when predicting the
bio-activities of a molecule for a given target protein, we may encounter molecules with very
different molecular sizes, scaffolds etc, from the training examples [21]. Such input distribution shift,
unfortunately, cannot always be correctly reflected by models trained to maximize the predictive
probability pω(y|x, ϕi).
We first conduct a controlled experiment and show that modelling the joint distribution can lead
to superior performance in OOD task detection which further substantiate our claim. We base our
experiment on drug activity prediction tasks as described in Section 5, where p(x) changes across
tasks. The experimental details are as follow.

Setup There are three major factors affecting OOD detection performance, including a) whether
we model the conditional or joint distribution, b) the model capacity, e.g., Gaussians or EBMs,
and c) OOD scores, e.g., energy sum or sum of negative log-likelihood (SNLL) of the support
samples. To investigate the effect of (a) specifically, we fix the controlled variables (b) with the same
EBM architectural capacity, and (c) with either energy sum or SNLL. Consequently, we compare
EBML-joint, which is exactly our proposed training procedure in the paper, and EBML-conditional,
which follows the same training with EBML-joint but models p(Y|X) instead of p(X,Y) of the
meta-training task distribution. Concretely, the training objective for EBML-conditional becomes

argmax
ω,λ,ψ

log pω,λ,ψ(Yi|Xi) :=

argmaxω,λ,ψ Eϕi∼qψ(ϕi| T si )
[∑

j

−Eω(ysij , xsij , ϕi) + Ey′∼pω(y′|xsij ,ϕi)[Eω(y
′
ij , x

s
ij , ϕi)]

]
− Eϕi∼qψ(ϕi| T si )[−Eλ(ϕi)] + Eϕi∼pλ(ϕ′

i)
[Eλ(ϕ

′
i)] +H(qψ(ϕi| T

s
i )), (24)

which only differs from the training objective of EBML-joint in Eqn. (8) in the sampling y′ ∼
pω(y

′|xsij , ϕi).

Table 16: EBML-joint vs EBML-conditional on DrugOOD few-shot regression and OOD task
detection.

OOD Scores EBML-joint EBML-Conditional

Mean R2 AUROC AUPR FPR95 Mean R2 AUROC AUPR FPR95

SNLL 0.533 99.71 99.71 2.20 0.534 54.91 54.14 66.60
Energy Sum 99.79 99.78 1.40 63.74 58.15 66.20
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Figure 12: Histogram for SNLL of
CNPs trained with p(Y|X) of ID and
OOD tasks, where OOD tasks contain
molecules with much larger molecular
sizes than the ones in ID tasks.

Results In Table 16, we observe that EBML-joint outperforms
EBML-conditional by large margins in detecting OOD tasks
(molecules with larger molecular size).

For an additional illustration, in Figure 12, we show the
histogram of the averaged support samples negative log-
likelihood (SNLL) of a CNPs model trained with p(Y|X).
We see that CNPs still outputs relatively high likelihood for
some of the OOD tasks making their prediction indistinguish-
able from the ones on ID tasks

These empirical evidence support our motivation for modelling
the joint distribution instead of the conditional distribution for
potentially achieving better OOD task detection performance.
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E Pseudocode for EBML

Algorithm 1 EBML Meta-training
Input: Meta-training tasks {T 1, T 2, ... T N}
Output: Meta-learned optimal parameters ω∗, ψ∗, λ∗

1: Initialize the parameters ω,ψ,λ for data EBM, latent posterior, and prior EBM
2: while not converged do
3: B ∼ {T 1, T 2, ... T N} ▷ sample a batch of tasks
4: for i = 1, 2, ..., |B| do ▷ for each sampled task in B
5: T si = {Xs

i ,Y
s
i }N

s
i , T qi = {X

q
i ,Y

q
i }N

q
i ∼ T i ▷ sample support and query sets

6: ϕi ∼ qψ(ϕi| T si ) ▷ infer the task latent variable by the base algorithm
7: x′, y′ ∼ pω(x′, y′|ϕi), ϕ′i ∼ pλ(ϕ′i) ▷ Sampling by SGLD in Eqn. (3)
8: Compute loss for T i as Li(ω, ψ, λ) using Eqn. (8).
9: end for

10: ω, ψ, λ← Opt(∇ω,ψ,λ 1
|B|

∑
i∈B Li) ▷ Update parameters in the outer-loop

11: end while

Algorithm 2 EBML Meta-testing
Input: Meta-testing tasks {T 1, T 2, ... T N}, parameters λ∗, ω∗, ψ∗, num adaptation steps K
Output: Query Prediction for each task {Yq

1,Y
q
2, ...Y

q
N}

1: for i = 1, 2, ..., N do ▷ for each test task
2: T i → T si = {Xs

i ,Y
s
i }N

s
i , T qi = {X

q
i , }N

q
i ▷ get support and unlabelled query sets

3: if K > 0 then ▷ Using EBML OOD task adaptation
4: ζ ← Alg. (3)(λ∗, ω∗, ψ∗, T si ,K) ▷ EBML OOD Task Adaptation
5: else
6: ζ ← ∅
7: end if
8: yqj = argminy Eϕ∼qψ∗∪ζ(ϕ| T si )

[
Eω∗(x

q
j , y,ϕ) + Eλ∗(ϕ)

]
,∀j ∈ Xq

i ▷ query prediction
9: end for

Algorithm 3 EBML OOD Task Adaptation
Input: Model parameters λ∗, ω∗, ψ∗, task support set T si , num adaptation steps K
Output: Task-specific parameter ζ

1: for k = 1, 2, ...K do ▷ for K adaptation steps
2: ϕi ∼ qψ∗∪ζ(ϕi| T si ) ▷ infer task latent variable by base algorithm
3: Compute loss on T si as L(ζ) using Eqn. (11).
4: ζ ← Opt(∇ζL(ζ)) ▷ Update task-specific parameter ζ
5: end for
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